Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Herramientas de corte para optimizar parámetros de clasificación de especies maderables con redes neuronales convolucionales
PDF
HTML
EPUB

Palabras clave

tropical trees;
illegal timber;
macroscopic images;
machine learning;
cutting tools;
portable microscope
árboles tropicales;
madera ilegal;
imágenes macroscópicas;
aprendizaje automático;
herramientas de corte;
microscopio portátil

Cómo citar

Centeno, T. B., Ferreira, C., Inga, J. G., Vélez, A., Huacho, R., Vidal, O. D., Moya, S. M., Reyes, D. C., Goytendia, W. E., Ascue, B. S., & Tomazello-Filho, M. (2023). Herramientas de corte para optimizar parámetros de clasificación de especies maderables con redes neuronales convolucionales. Revista De Biología Tropical, 71(1), e51310. https://doi.org/10.15517/rev.biol.trop.v71i1.51310

Resumen

Introducción: La gran diversidad de especies maderables tropicales demanda el desarrollo de nuevas tecnologías de identificación con base en sus patrones o características anatómicas. La aplicación de redes neuronales convolucionales (CNN) para el reconocimiento de especies maderables tropicales se ha incrementado en los últimos años por sus resultados prometedores. Objetivo: Evaluamos la calidad de las imágenes macroscópicas con tres herramientas de corte para mejorar la visualización y distinción de las características anatómicas en el entrenamiento del modelo CNN. Métodos: Recolectamos las muestras entre el 2020 y 2021 en áreas de explotación forestal y aserraderos de Selva Central, Perú. Luego, las dimensionamos y, previo a la identificación botánica y anatómica, las cortamos en secciones transversales. Generamos una base de datos de imágenes macroscópicas de la sección transversal de la madera, a través del corte, con tres herramientas para ver su rendimiento en el laboratorio, campo y puesto de control. Resultados: Usamos tres herramientas de corte para obtener una alta calidad de imágenes transversales de la madera; obtuvimos 3 750 imágenes macroscópicas con un microscopio portátil que corresponden a 25 especies maderables. El cuchillo “Tramontina” es duradero, pero pierde el filo con facilidad y se necesita una herramienta para afilar, el cúter retráctil “Pretul” es adecuado para madera suave y dura en muestras pequeñas de laboratorio; el cuchillo “Ubermann” es apropiado para el campo, laboratorio y puesto de control, porque tiene una envoltura duradera y láminas intercambiables en caso de pérdida de filo. Conclusiones: La calidad de las imágenes es decisiva en la clasificación de especies maderables, porque permite una mejor visualización y distinción de las características anatómicas en el entrenamiento con los modelos de red neuronal convolucional EfficientNet B0 y Custom Vision, lo cual se evidenció en las métricas de precisión.

https://doi.org/10.15517/rev.biol.trop..v71i1.51310
PDF
HTML
EPUB

Citas

Aguilar-Alvarado, J. V., & Campoverde-Molina, M. A. (2019). Classification of fruits based on convolutional neural networks. Polo de Conocimiento, 5(1), 3–22. https://doi.org/10.23857/pc.v5i01.1210

Apolinario-Lainez, M. P. E., Huamán-Bustamante, S. G., & Orellana, G. C. (2018). Deep learning applied to identification of commercial timber species from Peru. 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing, 2018, 1–4. https://doi.org/10.1109/INTERCON.2018.8526457

Apolinario, M. P. E., Urcia, D. A., & Huaman, S. G. (2019). Open set recognition of timber species using deep learning for embedded systems. IEEE Latin America Transactions, 17(12), 2005–2012. https://doi.org/10.1109/TLA.2019.9011545

Backes, A., & Sá Junior, J. J. de M. (2016). Introdução à visão computacional usando MATLAB. Alta Books Editora.

Berzal, F. (2018). Redes neuronales & deep learning. Publicación independiente. https://deep-learning.ikor.org/book

Breiman, L. (2001). Random forests. Machine Learning, 45(2), 5–32. https://doi.org/10.1023/A:1010950718922

de Andrade, B. G., Basso, V. M., & de Figueiredo-Latorraca, J. V. (2020). Machine vision for field-level wood identification. IAWA Journal, 41(4), 681–698. https://doi.org/10.1163/22941932-bja10001

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48(2019), 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Fabijańska, A., Danek, M., & Barniak, J. (2021). Wood species automatic identification from wood core images with a residual convolutional neural network. Computers and Electronics in Agriculture, 181(2021), 105941. https://doi.org/10.1016/j.compag.2020.105941

Ferreira, C. A., Inga, J. G., Vidal, O. D., Goytendia, W. E., Moya, S. M., Centeno, T. B., Vélez, A., Gamarra, D., & Tomazello-Filho, M. (2021). Identification of tree species from the Peruvian tropical amazon “Selva Central” forests according to wood anatomy. BioResources, 16(4), 7161–7179. https://doi.org/10.15376/biores.16.4.7161-7179

Ferreira, C., & Inga, G. (2022). Guía de anatomía e identificación de 50 especies maderables comerciales en Selva Central, Perú. Universidad Continental.

Filho, P. L., Oliveira, L. S., Britto, A. S., & Sabourin, R. (2010). Forest species recognition using color-based features. 20th Proceedings-International Conference on Pattern Recognition, 2010, 4178–4181. https://doi.org/10.1109/ICPR.2010.1015

Filho, P. L. P., Oliveira, L. S., Nisgoski, S., & Britto, A. S. (2014). Forest species recognition using macroscopic images. Machine Vision and Applications, 25(4), 1019–1031. https://doi.org/10.1007/s00138-014-0592-7

Gonçalves, Y. L. M., Siqueira, E. S., Ferreira, C. A., Teixeira, M. da S., Correa, P. da V., & Urbinati, C. V. (2022). Aplicação de algoritmos de Random Forest no suporte à identificação das espécies Handroanthus serratifolius (Vahl) S. O. Grose e Handroanthus impetiginosus (Mart. Ex DC.) Mattos (Bignoniaceae). Brazilian Journal of Development, 8(5), 39721–39735. https://doi.org/10.34117/bjdv8n5-457

Gu, I. Y. H., Andersson, H., & Vicen, R. (2010). Wood defect classification based on image analysis and support vector machines. Wood Science and Technology, 44(4), 693–704. https://doi.org/10.1007/s00226-009-0287-9

Hafemann, L. G., Oliveira, L. S., & Cavalin, P. (2014). Forest species recognition using deep convolutional neural networks. 22nd International Conference on Pattern Recognition, 2014, 1103–1107. https://doi.org/10.1109/ICPR.2014.199

Hanssen, F., Wischnewski, N., Moreth, U., & Magel, E. (2011). Molecular Identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata Wood Using Taxon-Specific RDNA-ITS Primers. IAWA Journal, 32(2), 273–284. https://doi.org/10.1163/22941932-90000057

Ibrahim, I., Khairuddin, A. S. M., Abu-Talip, M. S., Arof, H., & Yusof, R. (2017). Tree species recognition system based on macroscopic image analysis. Wood Science and Technology, 51(2), 431–444. https://doi.org/10.1007/s00226-016-0859-4

Khalid, M., Lew, E., Lee, Y. I., Yusof, R., & Nadaraj, M. (2008). Design of an intelligent wood species recognition system. International Journal of Simulation: Systems, Science & Technology, 9(3), 9–19.

Koch, G., & Haag, V. (2015). Control of internationally traded timber-the role of macroscopic and microscopic wood identification against illegal logging. Journal of Forensic Research, 6(6), 1000317. https://doi.org/10.4172/2157-7145.1000317

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. Communication of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386

Kwon, O., Lee, H. G., Lee, M. R., Jang, S., Yang, S. Y., Park, S. Y., Choi, I. G., & Yeo, H. (2017). Automatic wood species identification of Korean softwood based on convolutional neural networks. Journal of the Korean Wood Science and Technology, 45(6), 797–808. https://doi.org/10.5658/WOOD.2017.45.6.797

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Lens, F., Liang, C., Guo, Y., Tang, X., Jahanbanifard, M., da Silva, F. S. C., Ceccantini, G., & Verbeek, F. J. (2020). Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 41(4), 660–680. https://doi.org/10.1163/22941932-bja10029

Livingston, S., & Risse, M. (2019). The future impact of artificial intelligence on humans and human rights. Ethics and International Affairs, 33(2), 141–158. https://doi.org/10.1017/S089267941900011X

Mata-Montero, E., Figueroa-Mata, G., Arias-Aguilar, D., Valverde-Otárola, J. C., Zamora-Villalobos, N., Paniagua-Bastos, J. C., & López-Aragón, S. (2020). Identificación automática de especies forestales maderables amenazadas de Costa Rica, mediante técnicas de visión artificial. TEC. https://hdl.handle.net/2238/13276

Morgenstern, L., & Mcilraith, S. (2011). John McCarthy’s legacy. Artificial Intelligence, 175(1), 1–24. https://doi.org/10.1016/j.artint.2010.11.003

Nouretdinov, I., Devetyarov, D., Vovk, V., Burford, B., Camuzeaux, S., Gentry-Maharaj, A., Tiss, A., Smith, C., Luo, Z., Chervonenkis, A., Hallett, R., Waterfield, M., Cramer, R., Timms, J. F., Jacobs, I., Menon, U., & Gammerman, A. (2015). Multiprobabilistic prediction in early medical diagnoses. Annals of Mathematics and Artificial Intelligence, 74(1-2), 203–222. https://doi.org/10.1007/s10472-013-9367-5

Porcelli, A., & Martínez, A. (2020). Más allá de la ciencia ficción: la inteligencia artificial un aliado contra el COVID 19. Diario DPI, 57, 1–4.

Portugal, I., Alencar, P., & Cowan, D. (2015). The use of machine learning algorithms in recommender systems: a systematic review. Expert Systems with Applications, 97, 205–227. https://doi.org/10.1016/j.eswa.2017.12.020

Rajagopal, H., Khairuddin, A. S. M., Mokhtar, N., Ahmad, A., & Yusof, R. (2019). Application of image quality assessment module to motion-blurred wood images for wood species identification system. Wood Science and Technology, 53(4), 967–981. https://doi.org/10.1007/s00226-019-01110-2

Ravindran, P., Costa, A., Soares, R., & Wiedenhoeft, A. C. (2018). Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 14(1), 14–25. https://doi.org/10.1186/s13007-018-0292-9

Ravindran, P., Ebanyenle, E., Ebeheakey, A., Abban, K., Lambog, O., Soares, R., Costa, A., & Wiedenhoeft, A. (2019). Image based identification of ghanaian timbers using the XyloTron: opportunities, risks and challenges. 33rd Conference on Neural Information Processing Systems, 2019, 1–10.

Ravindran, P., Thompson, B. J., Soares, R. K., & Wiedenhoeft, A. C. (2020). The XyloTron: flexible, open-source, image-based macroscopic field identification of wood products. Frontiers in Plant Science, 11, 1015. https://doi.org/10.3389/fpls.2020.01015

Richter, H. G., & Dallwitz, M. J. (2019). Commercial timbers: descriptions, illustrations, identification, and information retrieval. https://Www.Delta-Intkey.Com/Wood/Es/Www/Mimcecat.Htm.

da Silva, R. N., De Ridder, M., Baetens, J. M., Van den Bulcke, J., Rousseau, M., Martinez, O., Beeckman, H., Van Acker, J., & De Baets, B. (2017). Automated classification of wood transverse cross-section micro-imagery from 77 commercial Central-African timber species. Annals of Forest Science, 74(2), 30. https://doi.org/10.1007/s13595-017-0619-0

Siew, K. F., Tang, X. J., & Tay, Y. H. (2017). Improved convolutional networks in forest species identification task. Second International Workshop on Pattern Recognition, 10443, 104430C. https://doi.org/10.1117/12.2280616

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404

Simić, S., Banković, Z., Simić, D., & Simić, S. D. (2018). A hybrid clustering approach for diagnosing medical diseases. Hybrid Artificial Intelligent Systems, 10870(2018), 741–752. https://doi.org/10.1007/978-3-319-92639-1_62

Tang, X. J., Tay, Y. H., Siam, N. A., & Lim, S. C. (2018). MyWood-ID: Automated macroscopic wood identification system using smartphone and macro-lens. ACM International Conference Proceeding Series, 2018, 37–43. https://doi.org/10.1145/3293475.3293493

Turing, A. M. (1936). On computable numbers, with an application to the entscheidungs problem. Proceedings of the London Mathematical Society, 42(1), 230–265.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., … Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), 350–354. https://doi.org/10.1038/s41586-019-1724-z

Yadav, A. R., Dewal, M. L., Anand, R. S., & Gupta, S. (2013). Classification of hardwood species using ANN classifier. 2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), Jodhpur, India. https://doi.org/10.1109/NCVPRIPG.2013.6776231

Yang, J., Huang, P., Dai, F., Sun, Y., Wang, L., & Bi, H. (2019). Application of Deep Learning in Wood Classification. 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI), 2019, 124–129. https://doi.org/10.1109/CSEI47661.2019.8938960

Ye, J. (2015). Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artificial Intelligence in Medicine, 63(3), 171–179. https://doi.org/10.1016/j.artmed.2014.12.007

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2023 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.