Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Morphometric variations in the reef crab Plagusia depressa (Decapoda: Plagusiidae) in the Western tropical Atlantic

How to Cite

Costa, A. K., Albuquerque Lira, S. M. ., Nunes Silva, L., & Schwamborn , R. (2024). Morphometric variations in the reef crab Plagusia depressa (Decapoda: Plagusiidae) in the Western tropical Atlantic. Revista De Biología Tropical, 72(1). https://doi.org/10.15517/rev.biol.trop.v72i1.56414

Abstract

Introduction: The reef crab Plagusia depressa is widely distributed in tropical oceans. In the Atlantic Ocean, this species is distributed in geographically distant regions with different environmental pressures, which may lead to morphological divergence. Objectives: To explore morphometric differences in Plagusia depressa populations between coastal reefs and an oceanic island in the Western tropical Atlantic. Also, to examine the potential link between the species' phenotypic plasticity and environmental and geographic factors. Methods: A total of 194 crabs were sampled from four Brazilian coastal and oceanic sites (Suape: n= 52, Tamandaré: n= 53, Barra Grande: n= 44, and Fernando de Noronha Archipelago: n= 45) from 2020 to 2022, under distinct anthropogenic and environmental influences. Linear and geometric morphometric analysis employed seven linear measurements and specific landmarks on the carapace, abdomen, and right chelae to pinpoint significant morphometric differences among these areas. Results: The westernmost coastal population exhibited striking differences from the other regions. Male crabs in this population had a pronounced carapace rostrum, while females showed a narrower abdomen, longer telson, and chelae thinning and elongation. It is possible that the pronounced isolation in this area, along with patterns of changes in ocean currents, may influence our results. Female crab carapaces from the island area showed lateral enlargement and pronounced rostrum depressions. Furthermore, being farther from the mainland, this site has oceanic island environmental features, affecting the population through desiccation and air exposure. For male crabs, different right chelae shape across areas showed an impact of food capture and interaction with other organisms on their phenotypic plasticity. Conclusion: Environmental factors such as tidal exposure and habitat composition might affect the phenotypic plasticity of tidal crabs. Moreover, a biogeographical barrier in Northeastern Brazil, which was hitherto given little consideration, holds important implications for the biogeography of the Western tropical Atlantic.

https://doi.org/10.15517/rev.biol.trop..v72i1.56414

References

Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5–16. https://doi.org/10.1080/11250000409356545

Afkhami, M., Schubart, C. D., & Naderloo, R. (2016). Morphometric differentiation among populations of Leptodius exaratus (H. Milne Edwards, 1834) (Brachyura, Xanthidae) from the Persian Gulf and the Gulf of Oman. Crustaceana, 89(3), 259–271. https://doi.org/10.1163/15685403-00003525

Allen, B. J., Rodgers, B., Tuan, Y., & Levinton, J. S. (2012). Size-dependent temperature and desiccation constraints on performance capacity: Implications for sexual selection in a fiddler crab. Journal of Experimental Marine Biology and Ecology, 438, 93–99. https://doi.org/10.1016/j.jembe.2012.09.009

Anger, K. (2001). The biology of decapod crustacean larvae (Vol. 14, pp. 1–420). AA Balkema Publishers.

Becker, B. J., Levin, L. A., Fodrie, F. J., & McMillan, P. A. (2007). Complex larval connectivity patterns among marine invertebrate populations. Proceedings of the National Academy of Sciences, 104(9), 3267–3272. https://doi.org/10.1073/pnas.0611651104

Cadrin, S. X., Karr, L. A., & Mariani, S. (2014). Stock identification methods: an overview. In S. X. Cadrin, L. A. Kerr, & S. Mariani (Eds.), Stock Identification Methods (2nd ed., pp. 1–5). https://doi.org/10.1016/B978-0-12-397003-9.00001-1

Callander, S., Kahn, A. T., Maricic, T., Jennions, M. D., & Backwell, P. R. Y. (2013). Weapons or mating signals? Claw shape and mate choice in a fiddler crab. Behavioral Ecology and Sociobiology, 67, 1163–1167. https://doi.org/10.1007/s00265-013-1541-6

Chapman, J. W., Klaassen, R. H. G., Drake, V. A., Fossette, S., Hays, G. C., Metcalfe, J. D., Reynolds, A. M., Reynolds, D. R., & Alerstam, T. (2011). Animal orientation strategies for movement in flows. Current Biology, 21(20), R861–R870. https://doi.org/10.1016/j.cub.2011.08.014

Clarke, T. M., Reygondeau, G., Wabnitz, C., Robertson, R., Ixquiac‐Cabrera, M., López, M., Ramírez-Coghi, A. R., Río-Iglesias, J. L., Wehrtmann, I., & Cheung, W. W. (2020). Climate change impacts on living marine resources in the Eastern Tropical Pacific. Diversity and Distributions, 27(1), 65–81. https://doi.org/10.1111/ddi.13181

Coelho, P. A, Oliviera de Almeida, A., & Arruda-Bezerra, L. E. (2008). Checklist of the marine and estuarine Brachyura (Crustacea: Decapoda) of northern and northeastern Brazil. Zootaxa, 1956, 1–58.

Coelho, P. A., Ferrão-Santos, M. D. C., & de Souza-Freitas, A. E. T. (2004). Crescimento do Aratu-da-Pedra, Plagusia depressa (Fabricius, 1775) (Crustacea, Decapoda, Plagusiidae), em Tamandare-Pernambuco. Boletim Tecnico-Cientifico do CEPENE, 12(1), 73–79.

de Andrade-Meireles, A. J., da Silva, J. A., & de Souza, W. F. (2017). Área de proteção ambiental (APA) da Barra Grande em Icapuí-CE: caminhos para a sustentabilidade. Conexões-Ciência e Tecnologia, 11(5), 90–100. https://doi.org/10.21439/conexoes.v11i5.1352

de Lemos, J., Carneiro, V. A., dos Santos, W. J., & dos Santos, T. C. (2019). Stomach contents and feeding habit of Plagusia depressa (Fabricius, 1775) (Crustacea: Decapoda: Plagusiidae) in sandstone reefs of northeast Brazil. Revista Nordestina de Zoologia, 12(1), 147–164.

de Lira, J. J., & Calado, T. C. D. S. (2013). Reproductive aspects and adaptive relative growth of the tropical crab Goniopsis cruentata. Animal Biology, 63(4), 407–424. https://doi.org/10.1163/15707563-00002422

de Lira, J. J., Calado, T. C. D. S., Rezende, C. F., & Silva, J. R. F. (2015). Comparative biology of the crab Goniopsis cruentata: geographic variation of body size, sexual maturity, and allometric growth. Helgoland Marine Research, 69, 335–342. https://doi.org/10.1007/s10152-015-0441-8

de Oliveira-Rocha, C. A., Rodrigues de Lira, J. J. P., de Lemos-Santana, J., Paiva-Guimarães, M., & dos Santos Calado, T. C. (2019). Biological aspects of the marine crab Plagusia depressa (Fabricius, 1775) on the northeast coast of Brazil. Marine Biology Research, 15(2), 181–190. https://doi.org/10.1080/17451000.2019.1612070

de Santana, C. S., Schwamborn, R., Neumann-Leitão, S., Montes, M. de J. F., & Lira, S. M. de A. (2018). Spatio-temporal variation of planktonic decapods along the leeward coast of the Fernando de Noronha archipelago, Brazil. Brazilian Journal of Oceanography, 66(1), 1–14. https://doi.org/10.1590/S1679-87592018147206601

Dossa, A. N., Silva, A. C., Chaigneau, A., Eldin, G., Araújo, M., & Bertrand, A. (2021). Near-surface western boundary circulation off Northeast Brazil. Progress in Oceanography, 190, 102475. https://doi.org/10.1016/j.pocean.2020.102475

Ferrari, L., Gil, D. G., & Vinuesa, J. H. (2011). Breeding and fecundity of the sub-Antarctic crab Halicarcinus planatus (Crustacea: Hymenosomatidae) in the Deseado River estuary, Argentina. Journal of the Marine Biological Association of the United Kingdom, 91(5), 1023–1029. https://doi.org/10.1017/S0025315410001840

Floeter, S. R., Rocha, L. A., Robertson, D. R., Joyeux, J. C., Smith‐Vaniz, W. F., Wirtz, P., Edwards, A. J., Barreiros, J. P., Ferreira, C. E. L., Gasparini, J. L., Brito, A., Falcón, M., Bowen, B. W., & Bernardi, G. (2008). Atlantic reef fish biogeography and evolution. Journal of Biogeography, 35(1), 22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x

Freire, A. S., Teschima, M. M., Brandao, M. C., Iwasa-Arai, T., Sobral, F. C., Sasaki, D. K., Agostinis, A. O., & Pie, M. R. (2021). Does the transport of larvae throughout the South Atlantic support the genetic and morphometric diversity of the Sally Lightfoot Crabs Grapsus grapsus (Linnaeus, 1758) and Grapsus adscensionis (Osbeck, 1765) (Decapoda: Grapsidae) among the oceanic islands? Journal of Marine Systems, 223, 103614. https://doi.org/10.1016/j.jmarsys.2021.103614

Freitas, A. S., & Santos, M. C. F. (2007). Aspects of the fishery biology of the Plagusia depressa (Fabricius, 1775) (Crustacea: Brachyura: Plagusiidae) caught in Tamandaré (Pernambuco-Brazil). Boletim Técnico-Científico do CEPENE, 15(2), 39–46.

Grinang, J., Das, I., & Ng, P. K. (2019). Geometric morphometric analysis in female freshwater crabs of Sarawak (Borneo) permits addressing taxonomy-related problems. PeerJ, 7, e6205. https://doi.org/10.7717/peerj.6205

Hampton, K. R., Hopkins, M. J., Mcnamara, J. C., & Thurman, C. L. (2014). Intraspecific variation in carapace morphology among fiddler crabs (genus Uca) from the Atlantic coast of Brazil. Aquatic Biology, 20, 53–67. https://doi.org/10.3354/ab00545

Hopkins, M. J., & Thurman, C. L. (2010). The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and Mexico. Biological Journal of the Linnean Society, 100(1), 248–270. https://doi.org/10.1111/j.1095-8312.2010.01402.x

Ituarte, R. B., D’Anatro, A., Luppi, T. A., Ribeiro, P. D., Spivak, E. D., Iribarne, O. O., & Lessa, E. P. (2012). Population structure of the SW Atlantic estuarine crab Neohelice granulata throughout its range: a genetic and morphometric study. Estuaries and Coasts, 35, 1249–1260. https://doi.org/10.1007/s12237-012-9516-9

Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226(3), 113–137. https://doi.org/10.1007/s00427-016-0539-2

Lima-Barcellos, R. L., Dantas dos Santos, L., Silvia de Oliveira, T. R., de Santana-Oliveira, T., & Amorim da Silva, J. C. (2018). Análise dos componentes da fração arenosa como indicadores ambientais no sistema costeiro associado ao Complexo Industrial Portuário de Suape (PE). Parcerias Estratégicas, 23(46), 159–168.

López-Greco, L. S., Viau, V., Lavolpe, M., Bond-Buckup, G., & Rodríguez, E. M. (2004). Juvenile hatching and maternal care in Aegla uruguayana (Anomura, Aeglidae). Journal of Crustacean Biology, 24(2), 309–313. https://doi.org/10.1651/C-2441

Maida, M., & Ferreira, B. P. (2003). Atlas dos Recifes de Coral nas Unidades de Conservação Brasileiras. Ministério do Meio Ambiente. Secretaria de Biodiversidade e Florestas.

Marochi, M. Z., Masunari, S., & Schubart, C. D. (2017). Genetic and morphological differentiation of the semiterrestrial crab Armases angustipes (Brachyura: Sesarmidae) along the Brazilian Coast. The Biological Bulletin, 232(1), 30–44. https://doi.org/10.1086/691985

Marshall, D. J., Monro, K., Bode, M., Keough, M. J., & Swearer, S. (2010). Phenotype-environment mismatches reduce connectivity in the sea. Ecology Letters, 13, 128–140. https://doi.org/10.1111/j.1461-0248.2009.01408.x

Melo, D. C. M., Lira, S. M. A., Moreira, A. P. B., Freitas, L., Lima, C. A. D., Thompson, F., Bertrand, A., Silva, A. C., & Neumann-Leitão, S. (2020) Genetic diversity and connectivity of Flaccisagitta enflata (Chaetognatha: Sagittidae) in the tropical Atlantic Ocean (northeastern Brazil). PLoS ONE, 15(6), e0231574. https://doi.org/10.1371/journal.pone.0231574

Melo, G. A. (1996). Manual de Identificação dos Brachyura (Caranguejos e Siris) do Litoral Brasileiro. Editora Plêiade.

Miyajima, A., Fukui, Y., & Wada, K. (2012). Agonistic and mating behavior in relation to chela features in Hemigrapsus takanoi and H. sinensis (Brachyura, Varunidae). Crustacean Research, 41, 47–58. https://doi.org/10.18353/crustacea.41.0_47

Oliveira-Almeida, A., & Lopes-Carvalho, F. (2014). On the southern limit of distribution of the crab Plagusia depressa (Fabricius, 1775) (Brachyura: Plagusiidae) along the continental Brazilian coast. Check List, 10(6), 1502–1503. https://doi.org/10.15560/10.6.1502

Oliveira-Rocha, C. A., & Paiva-Guimarães, M. (2016). Bioecologia de Plagusia depressa (Fabricius, 1775) em Coruripe, AL/BR: Aspectos da biologia de ecologia do aratu-da-pedra. Novas edições Academicas.

Paiva-Guimarães, M., dos Santos-Calado, T. C., & de Ferreira Barros, M. S. (2021). Gonad development in mature females of tidal spray crab Plagusia depressa (Brachyura: Plagusiidae). Acta Zoologica, 102(3), 227–236. https://doi.org/10.1111/azo.12337

Palumbi, S. R. (2003). Population genetics, demographic connectivity, and the design of marine reserves. Ecology Applications, 13(sp1), 146–158. https://doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2

Rebolledo, A. P., & Wehrtmann, I. S. (2016). Differentiation in reproductive traits of geminate mangrove crabs of the genus Aratus (Decapoda: Brachyura) across the Central American Isthmus. Marine Ecology, 37(6), 1210–1222. https://doi.org/10.1111/maec.12300

Rocha, L. A. (2003). Patterns of distribution and processes of speciation in Brazilian reef fishes. Journal of Biogeography, 30(8), 1161–1171. https://doi.org/10.1046/j.1365-2699.2003.00900.x

Rohlf, F. J. (2010). Program TpsDig (Version 2.31) [Software]. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook.

Rosenberg, M. S. (2001). The systematics and taxonomy of fiddler crabs: A phylogeny of the Genus Uca. Journal of Crustacean Biology, 21(3), 839−869. https://doi.org/10.1163/20021975-99990176

Sanford, E., & Kelly, M. W. (2011). Local adaptations in marine invertebrates. Annual Review of Marine Science, 3, 509−535. https://doi.org/10.1146/annurev-marine-120709-142756

Shanks, A. L. (2009). Pelagic larval duration and dispersal distance revisited. The Biological Bulletin, 216(3), 373–385. https://doi.org/10.1086/BBLv216n3p373

Silva, I. C, Mesquita, N., & Paula, J. (2010). Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura: Sesarmidae) along an East African latitudinal gradient. Biological Journal of the Linnean Society, 99(1), 28–46. https://doi.org/10.1111/j.1095-8312.2009.01338.x

Silva, I. C., & Paula, J. (2008). Is there a better chela to use for geometric morphometric differentiation in brachyuran crabs? A case study using Pachygrapsus marmoratus and Carcinus maenas. Journal of the Marine Biological Association of the United Kingdom, 88(5), 941–953. https://doi.org/10.1017/S0025315408001483

Smith, L. D. (2004). Biogeographic differences in claw size and performance in an introduced crab predator Carcinus maenas. Marine Ecology Progress Series, 276, 209–222.

Smith, L. D., & Palmer, A. R. (1994). Effects of manipulated diet on size and performance of brachyuran crab claws. Science, 264(5159), 710–712. https://doi.org/10.1126/science.264.5159.710

Sotka, E. E. (2012). Natural selection, larval dispersal, and the geography of phenotype in the sea. Integrative and Comparative Biology, 52(4), 538–545. https://doi.org/10.1093/icb/ics084

Teixeira, W. (Ed.). (2003). Arquipélago de Fernando de Noronha. O paraíso do Vulcão. Tempos do Brasil. Terra Virgem Editora.

Teschima, M. M., Strӧher, P. R., Firkowski, C. R., Pie, M. R., & Freire, A. S. (2016). Large-scale connectivity of Grapsus grapsus (Decapoda) in the Southwestern Atlantic oceanic islands: integrating genetic and morphometric data. Marine Ecology, 37(6), 1360–1372. https://doi.org/10.1111/maec.12347

Thurman, C. L., Alber, R. E., Hopkins, M. J., & Shih, H. T. (2021). Morphological and genetic variation among populations of the fiddler crab Minuca burgersi (Holthuis, 1967) (Crustacea: Brachyura: Ocypodidae) from shores of the Caribbean Basin and western South Atlantic Ocean. Zoology Study, 60, 19. https://doi.org/10.6620%2FZS.2021.60-19

Thurman, C. L., Faria, S., & McNamara, J. (2013). The distribution of fiddler crabs (Uca) along the coast of Brazil: Implications for biogeography of the western Atlantic Ocean. Marine Biodiversity Records, 6, E1. https://doi.org/10.1017/S1755267212000942

Tosetto, E. G., Bertrand, A., Neumann-Leitão, S., & Júnior, M. N. (2022). The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic. Scientific Reports, 12, 537. https://doi.org/10.1038/s41598-021-04165-z

Weersing, K., & Toonen, R. J. (2009). Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series, 393, 1–12. https://doi.org/10.3354/meps08287

Wieman, A. C., Berendzen, P. B., Hampton, K. R., Jang, J., Hopkings, M. J., Jurgenson, J., McNamara, J. C., & Thurman, C. L. (2014). A panmictic fiddler crab from the coast of Brazil? Impact of divergent ocean currents and larval dispersal potential on genetic and morphological variation in Uca maracoani. Marine Biology, 161, 173–185. https://doi.org/10.1007/s00227-013-2327-0

Zelditch, M., Swiderski, D., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer (2nd ed.). Academic Press.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical

Downloads

Download data is not yet available.