Abstract
Introduction: Morelet’s crocodile (Crocodylus moreletii) is a species distributed in the Mexican southeast and threatened due to multiple pressures. Objective: To characterize the digestive proteases in the acid phase (stomach) and alkaline phase (intestine) of three life stages of C. moreletii in captivity (hatchling, juvenile, and adult). Methods: Total alkaline and acid protease activities were quantified using casein and haemoglobin as substrates. Trypsin, chymotrypsin, leucine aminopeptidase, and elastase activities were quantified using synthetic substrates. Protease profiles were analysed by SDS-PAGE and Native-PAGE. Results: The specific activity of acid and alkaline proteases showed differences between the three stages, finding the highest activity in the juveniles. Trypsin, chymotrypsin, leucine aminopeptidase, and elastase activities were higher in hatchlings. There were differences in optimum pH and temperature of acid and alkaline proteases, trypsin, and leucine aminopeptidase between the three stages, demonstrating the diversification of the enzymes according to different stages, as well as the presence of specific isoforms in each stage of C. moreletii. The acid phase zymogram showed four bands with pepsin-like acid activity in the hatchling and juvenile crocodile, while in the adult only two of the four bands were detected. The alkaline zymogram showed that the hatchling had the highest number of activity bands compared to the other stages, corresponding to the high specific activity reported in the alkaline phase. Conclusions: Digestive proteases of Morelet’s crocodile differ in their biochemical characteristics and the number of proteases between hatchling, juvenile, and adult. This could help in the future design of balanced diets as well to the sustainable management and production of this species.
References
Alcon, E., & Bdolah, A. (1975). Increase of proteolytic activity and synthetic capacity of the pancreas in snakes after feeding. Comparative Biochemistry & Physiology A, 50, 627–631. https://doi.org/10.1016/0300-9629(75)90326-6
Anson, M. L. (1938). The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. Journal of General Physiology, 22, 79–89. https://doi.org/10.1085/jgp.22.1.79
Bhardwaj, S. B. (2013). Alcohol and gastrointestinal tract function. In R. R. Watson, & V. R. Preedy (Eds.), Bioactive food as dietary interventions for liver and gastrointestinal disease (pp. 81–118). Academic Press. https://doi.org/10.1016/C2011-0-07464-1
Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Casas-Andreu, G., Barrios-Quiroz, G., & Macip-Ríos, R. (2011). Reproducción en cautiverio de Crocodylus moreletii en Tabasco, México. Revista Mexicana de Biodiversidad, 82, 261–273. https://doi.org/10.22201/ib.20078706e.2011.1.444
Chikwati, E. M., Sahlmann, C., Holm, H., Penn, M. H., Krogdahl, Å., & Bakke, A. M. (2013) Alterations in digestive enzyme activities during the development of diet-induced enteritis in Atlantic salmon, Salmo salar L. Aquaculture, 402-403, 28–37. https://doi.org/10.1016/j.aquaculture.2013.03.023
Clarks, J., Macdonald, N. L., & Stark, J. R. (1985). Metabolism in marine flatfish-III. Measurement of elastase activity in the digestive tract of dover sole (Solea solea L). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81(3), 695–700. https://doi.org/10.1016/0305-0491(85)90389-X
Coulson, R. A., & Coulson, T. D. (1986). Effect of temperature on the rates of digestion, amino acid absorption and assimilation in the alligator. Comparative Biochemistry & Physiology Part A: Physiology, 83(3), 585–588. https://doi.org/10.1016/0300-9629(86)90150-7
Díaz-López, M., Moyano-López, F., Alarcón-López, F. J., García-Carreño, F. L., & Navarrete del Toro, M. A. (1998) Characterization of fish acid proteases by substrate-gel electrophoresis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 121(4), 369–377. https://doi.org/10.1016/S0305-0491(98)10123-2
Diefenbach, C. O. da C. (1974). Gastric function in Caiman crocodilus (Crocodylia: Reptilia)-I. Rate of gastric digestion and gastric motility as a function of temperature. Comparative Biochemistry and Physiology Part A: Physiology, 51(2), 259–265. https://doi.org/10.1016/0300-9629(75)90369-2
Fox, A., & Musacchia, X. (1959). Notes on the pH of the digestive tract of Chrysemys picta. Copeia, 1959(4), 337–339. https://doi.org/10.2307/1439895
García-Carreño, F. L., Dimes, L. E., & Haard, N. F. (1993). Substrate-Gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214(1), 65–69. https://doi.org/10.1006/abio.1993.1457
García-Carreño, F. L., Hernández-Cortés, M., & Haard, N. F. (1994). Enzymes with peptidase and proteinase activity from the digestive systems of a freshwater and a marine decapod. Journal of Agricultural and Food Chemistry, 42(7), 1456–1461. https://doi.org/10.1021/jf00043a013
Gildberg, A., Olsen, R. L., & Bjarnason, J. B. (1990). Catalytic properties and chemical composition of pepsins from Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 96(2), 323–330.
Huchzermeyer, F. W. (2003). Crocodiles biology, husbandry and diseases. CABI Publishing, Wallinford.
Ishida, M., Ogawa, M., Mori, T., & Mega, T. (1987). Determination and characterization of succinyl tri-alanine p-nitroanilide hydrolyzing metalloendopeptidase in serum. Enzyme, 37(4), 202–207. https://doi.org/10.1159/000469263
Jesús‑De la Cruz, K., Álvarez‑González, C. A., Peña, E., Morales‑Contreras, J. A., & Ávila‑Fernández, A. (2018). Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech, 8, 186. https://doi.org/10.1007/s13205-018-1208-0
Klomklao S. (2008). Digestive proteinases from marine organisms and their applications. Songklanakarin Journal of Science and Technology, 30(1), 37–46.
Maroux, S., Louvard, D., & Barath, J. (1973). The aminopeptidase from hog intestinal brush border. Biochimica et Biophysica Acta (BBA)-Enzymology, 321(1), 282–295. https://doi.org/10.1016/0005-2744(73)90083-1
Moreira, E., Novillo, M., Eastman, J. T., & Barrera-Oro, E. (2020). Degree of herbivory and intestinal morphology in nine notothenioid fishes from the western Antarctic Peninsula. Polar Biology, 43, 535–544. https://doi.org/10.1007/s00300-020-02655-w
Parachú-Marcó, M. V., Piña, C. I., & Larriera, A. (2009). Food conversion rate (FCR) in Caiman latirostris resulted more efficient at higher temperatures. Interciencia, 34(6), 428–431.
Pérez-Gómez, M., Naranjo-López, C., Reyes-Tur, B., & Vega-Ramírez, I. (2009). Influencia de dos tipos de dietas sobre la talla y el peso corporal en neonatos de Crocodylus acutus Cuvier, 1807 (Crocodylidae: Crocodylia) del zoocriadero de Manzanillo, Cuba. Acta Zoológica Mexicana, 25(1), 151–160.
Platt, S. G., Rainwater, T. R., Finger, A. G., Thorbjarnarson, J. B., Anderson, T. A., & McMurry, S. T. (2006). Food habits, ontogenetic dietary partitioning and observations of foraging behaviour of Morelet’s crocodile (Crocodylus moreletii) in Northern Belize. The Herpetological Journal, 16(3), 281–290.
Platt, S. G., Rainwater, T. R., Snider, S., Garel, A., Anderson, T. A., & McMurry, S. T. (2007). Consumption of large mammals by Crocodylus moreletii: field observations of necrophagy and interspecific kleptoparasitism. The Southwestern Naturalist, 52(2), 310–317.
Platt, S. G., Sigler, L., & Rainwater, T. R. (2010). Morelet’s crocodile Crocodylus moreletii. In S. C. Manolis & C. Stevenson (Eds.), Crocodiles. Status Survey and Conservation Action Plan (3rd ed., pp. 79–83). Crocodile Specialist Group, Australia.
Radloff, F. G. T., Hobson, K. A., & Leslie, A. J. (2012). Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin. Isotopes in Environmental and Health Studies, 48, 439–456. https://doi.org/10.1080/10256016.2012.667808
Rangel-Mendoza, J., Hernández-García, J., Álvarez-González, C. A., Guerrero-Zárate, R., Zenteno-Ruiz, C. E., & López-Luna, M. A. (2018). Digestive proteases and in vitro protein digestibility of feed ingredients for the Central American river turtle, Dermatemys mawii. Journal of Animal Physiology and Animal Nutrition, 102(4), 1102–1110. https://doi.org/10.1111/jpn.12889
Rawlings, N. D., & Salvesen, G. S. (2013). Handbook of Proteolytic Enzymes (3rd Ed.). Academic Press.
Ross, J. P., & Honeyfield, D. (2008). Experimental induction of vitamin deficiency with diet in captive alligators. In Crocodiles, Proceedings of the 19th Working Meeting of the Crocodile Specialist Group (p.181). IUCN-The World Conservation Union.
Simpson, B. K. (2000). Digestive proteinases from marine animals. In N. F. Haard & B. K. Simpson (Eds.), Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality (pp. 531–540). Marcel Dekker, New York.
Solovyev, M., Kashinskaya, E., & Gisbert, E. (2023) A meta-analysis for assessing the contributions of trypsin and chymotrypsin as the two major endoproteases in protein hydrolysis in fish intestine. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 278, 111372. https://doi.org/10.1016/j.cbpa.2023.111372
Sun, J. Y., Du, J., Qian, L. C., Jing, M. Y., & Weng, X. Y. (2007). Distribution and characteristics of endogenous digestive enzymes in the red-eared slider turtle, Trachemys scripta elegans. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(4), 1125–1129. https://doi.org/10.1016/j.cbpa.2007.03.026
Tracy, C. R., McWhorter, T. J., Gienger, C. M., Starck, J. M., Medley, P., Manolis, S. C., Webb, G. J. W., & Christian, K. A. (2015). Alligators and crocodiles have high paracellular absorption of nutrients, but differ in digestive morphology and physiology. Integrative and Comparative Biology, 55(6), 986–1004. https://doi.org/10.1093/icb/icv060
Venesky, M. D., Hanlon S. M., Lynch, K., Parris, M. J., & Rohr J. R. (2013). Optimal digestion theory does not predict the effect of pathogens on intestinal plasticity. Biology Letters, 9, 20130038. https://doi.org/10.1098/rsbl.2013.0038
Walter, H. E. (1984). Proteinases: methods with hemoglobin, casein and azocoll as substrates. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Vol. 5, pp. 270-277). Verlag Chemie.
Whitaker, N., & Andrews, H. (1998). Madras croc bank: an update. In: Crocodiles. Proceedings of the 14th Working Meeting of the Crocodile Specialist Group (pp. 4012–406). IUCN-The World Conservation Union.
Whitcomb, D. C., & Lowe, M. E. (2007). Human pancreatic digestive enzymes. Digestive Diseases and Sciences, 52, 1–17. https://doi.org/10.1007/s10620-006-9589-z
Zhalka, M., & Bdolah, A. (1987). Dietary regulation of digestive enzyme levels in the water snake, Natrix tessellate. The Journal of Experimental Zoology, 243, 9–13. https://doi.org/10.1002/jez.1402430103
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Revista de Biología Tropical