Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Proteasas digestivas del cocodrilo de pantano (Crocodylus moreletii) en tres etapas de vida
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

pepsin;
trypsin;
leucine aminopeptidase;
hatchling;
juvenile;
adult
pepsina;
tripsina;
leucina aminopeptidasa;
cría;
juvenil;
adulto

Cómo citar

Castillo-Rodríguez, M. A., Rangel-Mendoza, J. A., Peña-Marín, E. S., Álvarez-González, C. A., López-Luna, M. A., & Maytorena-Verdugo, C. I. (2024). Proteasas digestivas del cocodrilo de pantano (Crocodylus moreletii) en tres etapas de vida. Revista De Biología Tropical, 72(1), e56376. https://doi.org/10.15517/rev.biol.trop.v72i1.56736

Resumen

Introducción: El cocodrilo de pantano (Crocodylus moreletii) es una especie distribuida en el sureste mexicano y amenazada por múltiples presiones. Objetivo: Caracterizar las proteasas digestivas en fase ácida (estómago) y fase alcalina (intestino) en tres etapas de vida de C. moreletii en cautiverio (cría, juvenil y adulto). Métodos: Se cuantificaron las actividades de proteasas alcalinas y ácidas totales utilizando caseína y hemoglobina como sustrato. Las actividades de tripsina, quimotripsina, leucina aminopeptidasa y elastasa se cuantificaron utilizando sustratos sintéticos. Los perfiles de proteasas se analizaron mediante SDS-PAGE y PAGE nativa. Resultados: La actividad específica de las proteasas ácidas y alcalinas mostró diferencias entre las tres tallas, encontrándose la mayor actividad en el estadio juvenil. Las actividades de tripsina, quimotripsina, leucina aminopeptidasa y elastasa fueron mayores en las crías. Hubo diferencias en el pH y temperatura óptimos de las proteasas ácidas y alcalinas, tripsina y leucina aminopeptidasa entre las tres tallas, demostrando la diversificación de las enzimas según las diferentes tallas, así como la presencia de isoformas específicas en cada talla de C. moreletii. El zimograma en fase ácida mostró cuatro bandas con actividad similar a pepsina en la cría y juvenil, mientras que en el adulto solo se detectaron dos de las cuatro bandas. El zimograma alcalino mostró que la cría tuvo el mayor número de bandas de actividad en comparación con las otras tallas, correspondiente a la alta actividad específica reportada en la fase alcalina. Conclusiones: Las proteasas digestivas del cocodrilo de pantano presentaron características bioquímicas y en número de proteasas diferentes entre cría, juvenil y adulto. Esto podría ayudar en el futuro diseño de dietas balanceadas, así como al manejo y producción sustentable de esta especie.

https://doi.org/10.15517/rev.biol.trop..v72i1.56736
PDF (English)
HTML (English)
EPUB (English)

Citas

Alcon, E., & Bdolah, A. (1975). Increase of proteolytic activity and synthetic capacity of the pancreas in snakes after feeding. Comparative Biochemistry & Physiology A, 50, 627–631. https://doi.org/10.1016/0300-9629(75)90326-6

Anson, M. L. (1938). The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. Journal of General Physiology, 22, 79–89. https://doi.org/10.1085/jgp.22.1.79

Bhardwaj, S. B. (2013). Alcohol and gastrointestinal tract function. In R. R. Watson, & V. R. Preedy (Eds.), Bioactive food as dietary interventions for liver and gastrointestinal disease (pp. 81–118). Academic Press. https://doi.org/10.1016/C2011-0-07464-1

Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Casas-Andreu, G., Barrios-Quiroz, G., & Macip-Ríos, R. (2011). Reproducción en cautiverio de Crocodylus moreletii en Tabasco, México. Revista Mexicana de Biodiversidad, 82, 261–273. https://doi.org/10.22201/ib.20078706e.2011.1.444

Chikwati, E. M., Sahlmann, C., Holm, H., Penn, M. H., Krogdahl, Å., & Bakke, A. M. (2013) Alterations in digestive enzyme activities during the development of diet-induced enteritis in Atlantic salmon, Salmo salar L. Aquaculture, 402-403, 28–37. https://doi.org/10.1016/j.aquaculture.2013.03.023

Clarks, J., Macdonald, N. L., & Stark, J. R. (1985). Metabolism in marine flatfish-III. Measurement of elastase activity in the digestive tract of dover sole (Solea solea L). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 81(3), 695–700. https://doi.org/10.1016/0305-0491(85)90389-X

Coulson, R. A., & Coulson, T. D. (1986). Effect of temperature on the rates of digestion, amino acid absorption and assimilation in the alligator. Comparative Biochemistry & Physiology Part A: Physiology, 83(3), 585–588. https://doi.org/10.1016/0300-9629(86)90150-7

Díaz-López, M., Moyano-López, F., Alarcón-López, F. J., García-Carreño, F. L., & Navarrete del Toro, M. A. (1998) Characterization of fish acid proteases by substrate-gel electrophoresis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 121(4), 369–377. https://doi.org/10.1016/S0305-0491(98)10123-2

Diefenbach, C. O. da C. (1974). Gastric function in Caiman crocodilus (Crocodylia: Reptilia)-I. Rate of gastric digestion and gastric motility as a function of temperature. Comparative Biochemistry and Physiology Part A: Physiology, 51(2), 259–265. https://doi.org/10.1016/0300-9629(75)90369-2

Fox, A., & Musacchia, X. (1959). Notes on the pH of the digestive tract of Chrysemys picta. Copeia, 1959(4), 337–339. https://doi.org/10.2307/1439895

García-Carreño, F. L., Dimes, L. E., & Haard, N. F. (1993). Substrate-Gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214(1), 65–69. https://doi.org/10.1006/abio.1993.1457

García-Carreño, F. L., Hernández-Cortés, M., & Haard, N. F. (1994). Enzymes with peptidase and proteinase activity from the digestive systems of a freshwater and a marine decapod. Journal of Agricultural and Food Chemistry, 42(7), 1456–1461. https://doi.org/10.1021/jf00043a013

Gildberg, A., Olsen, R. L., & Bjarnason, J. B. (1990). Catalytic properties and chemical composition of pepsins from Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 96(2), 323–330.

Huchzermeyer, F. W. (2003). Crocodiles biology, husbandry and diseases. CABI Publishing, Wallinford.

Ishida, M., Ogawa, M., Mori, T., & Mega, T. (1987). Determination and characterization of succinyl tri-alanine p-nitroanilide hydrolyzing metalloendopeptidase in serum. Enzyme, 37(4), 202–207. https://doi.org/10.1159/000469263

Jesús‑De la Cruz, K., Álvarez‑González, C. A., Peña, E., Morales‑Contreras, J. A., & Ávila‑Fernández, A. (2018). Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech, 8, 186. https://doi.org/10.1007/s13205-018-1208-0

Klomklao S. (2008). Digestive proteinases from marine organisms and their applications. Songklanakarin Journal of Science and Technology, 30(1), 37–46.

Maroux, S., Louvard, D., & Barath, J. (1973). The aminopeptidase from hog intestinal brush border. Biochimica et Biophysica Acta (BBA)-Enzymology, 321(1), 282–295. https://doi.org/10.1016/0005-2744(73)90083-1

Moreira, E., Novillo, M., Eastman, J. T., & Barrera-Oro, E. (2020). Degree of herbivory and intestinal morphology in nine notothenioid fishes from the western Antarctic Peninsula. Polar Biology, 43, 535–544. https://doi.org/10.1007/s00300-020-02655-w

Parachú-Marcó, M. V., Piña, C. I., & Larriera, A. (2009). Food conversion rate (FCR) in Caiman latirostris resulted more efficient at higher temperatures. Interciencia, 34(6), 428–431.

Pérez-Gómez, M., Naranjo-López, C., Reyes-Tur, B., & Vega-Ramírez, I. (2009). Influencia de dos tipos de dietas sobre la talla y el peso corporal en neonatos de Crocodylus acutus Cuvier, 1807 (Crocodylidae: Crocodylia) del zoocriadero de Manzanillo, Cuba. Acta Zoológica Mexicana, 25(1), 151–160.

Platt, S. G., Rainwater, T. R., Finger, A. G., Thorbjarnarson, J. B., Anderson, T. A., & McMurry, S. T. (2006). Food habits, ontogenetic dietary partitioning and observations of foraging behaviour of Morelet’s crocodile (Crocodylus moreletii) in Northern Belize. The Herpetological Journal, 16(3), 281–290.

Platt, S. G., Rainwater, T. R., Snider, S., Garel, A., Anderson, T. A., & McMurry, S. T. (2007). Consumption of large mammals by Crocodylus moreletii: field observations of necrophagy and interspecific kleptoparasitism. The Southwestern Naturalist, 52(2), 310–317.

Platt, S. G., Sigler, L., & Rainwater, T. R. (2010). Morelet’s crocodile Crocodylus moreletii. In S. C. Manolis & C. Stevenson (Eds.), Crocodiles. Status Survey and Conservation Action Plan (3rd ed., pp. 79–83). Crocodile Specialist Group, Australia.

Radloff, F. G. T., Hobson, K. A., & Leslie, A. J. (2012). Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin. Isotopes in Environmental and Health Studies, 48, 439–456. https://doi.org/10.1080/10256016.2012.667808

Rangel-Mendoza, J., Hernández-García, J., Álvarez-González, C. A., Guerrero-Zárate, R., Zenteno-Ruiz, C. E., & López-Luna, M. A. (2018). Digestive proteases and in vitro protein digestibility of feed ingredients for the Central American river turtle, Dermatemys mawii. Journal of Animal Physiology and Animal Nutrition, 102(4), 1102–1110. https://doi.org/10.1111/jpn.12889

Rawlings, N. D., & Salvesen, G. S. (2013). Handbook of Proteolytic Enzymes (3rd Ed.). Academic Press.

Ross, J. P., & Honeyfield, D. (2008). Experimental induction of vitamin deficiency with diet in captive alligators. In Crocodiles, Proceedings of the 19th Working Meeting of the Crocodile Specialist Group (p.181). IUCN-The World Conservation Union.

Simpson, B. K. (2000). Digestive proteinases from marine animals. In N. F. Haard & B. K. Simpson (Eds.), Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality (pp. 531–540). Marcel Dekker, New York.

Solovyev, M., Kashinskaya, E., & Gisbert, E. (2023) A meta-analysis for assessing the contributions of trypsin and chymotrypsin as the two major endoproteases in protein hydrolysis in fish intestine. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 278, 111372. https://doi.org/10.1016/j.cbpa.2023.111372

Sun, J. Y., Du, J., Qian, L. C., Jing, M. Y., & Weng, X. Y. (2007). Distribution and characteristics of endogenous digestive enzymes in the red-eared slider turtle, Trachemys scripta elegans. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(4), 1125–1129. https://doi.org/10.1016/j.cbpa.2007.03.026

Tracy, C. R., McWhorter, T. J., Gienger, C. M., Starck, J. M., Medley, P., Manolis, S. C., Webb, G. J. W., & Christian, K. A. (2015). Alligators and crocodiles have high paracellular absorption of nutrients, but differ in digestive morphology and physiology. Integrative and Comparative Biology, 55(6), 986–1004. https://doi.org/10.1093/icb/icv060

Venesky, M. D., Hanlon S. M., Lynch, K., Parris, M. J., & Rohr J. R. (2013). Optimal digestion theory does not predict the effect of pathogens on intestinal plasticity. Biology Letters, 9, 20130038. https://doi.org/10.1098/rsbl.2013.0038

Walter, H. E. (1984). Proteinases: methods with hemoglobin, casein and azocoll as substrates. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Vol. 5, pp. 270-277). Verlag Chemie.

Whitaker, N., & Andrews, H. (1998). Madras croc bank: an update. In: Crocodiles. Proceedings of the 14th Working Meeting of the Crocodile Specialist Group (pp. 4012–406). IUCN-The World Conservation Union.

Whitcomb, D. C., & Lowe, M. E. (2007). Human pancreatic digestive enzymes. Digestive Diseases and Sciences, 52, 1–17. https://doi.org/10.1007/s10620-006-9589-z

Zhalka, M., & Bdolah, A. (1987). Dietary regulation of digestive enzyme levels in the water snake, Natrix tessellate. The Journal of Experimental Zoology, 243, 9–13. https://doi.org/10.1002/jez.1402430103

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2024 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.