Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Phytoremediation of aquaculture effluents through the use of six marine microalgae: sustainability contributions in the sea urchin aquaculture industry in Argentina
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Supplementary Files

MS1 - PDF (Español (España))
MS1 - DOC (Español (España))


circular economies; sustainable aquaculture; biorefinery; bioeconomy; Arbacia dufresnii; effluent treatment, microalgae.
economías circulares; acuicultura sustentable; biorrefinería; bioeconomía; Arbacia dufresnii; tratamiento de efluentes; microalgas.

How to Cite

Martelli, A., Vanina Zualet, T., Miras Gagliardi, M. B., & Rubilar, T. (2024). Phytoremediation of aquaculture effluents through the use of six marine microalgae: sustainability contributions in the sea urchin aquaculture industry in Argentina. Revista De Biología Tropical, 72(S1), e58979.


Introduction: The aquaculture industry is constantly growing, registering a global production of almost 88 million tonnes by 2020. This industry brings environmental problems if its effluents are not properly treated. In 2020, the first technology-based company of CONICET was established in Argentine Patagonia whose purpose is the aquaculture production of the green sea urchin, Arbacia dufresnii to develop a range of nutraceutical products. Its cultivation system entails a commitment to sustainability since its creation, and yet it generates effluents with high levels of nitrates and phosphates.

Objective: Given this scenario, and valuing bioremediation as a water treatment tool, the use of marine microalgae as phytoremediating agents of aquaculture effluent is proposed in this work.

Methods: The microalgae Chaetoceros gracilis, Navicula sp., Tetraselmis suecica, Rhodomona salina, Nanochloropsis galvana and Cylindrotheca closterium were use; which are used as food for sea urchins larvae in the production process. An experiment was designed that compares the microalgal growth and the removal capacity of nutrients in the effluent in contrast to the artificial culture medium currently used in the production cycle.

Results: It is possible to remedy the aquaculture industry’s effluent by employing the selected microalgae, with a percentage of removal efficiency of 100 % of the nitrate and an average removal efficiency percentage of 50 % for all the microalgae tested. Likewise, significantly higher microalgal biomass values were obtained when the culture was carried out in the effluent the culture in the artificial environment.

Conclusions: The advances in research provided in this work show that it is possible to take advantage of a discard to cultivate microalgae, even improving microalgal productivity for use as food, reducing the costs involved in the microalgal production sector by changing the use of the type of current culture medium (F/2) for that from a current discard. These advances, if scaled and validated, can improve industry sustainability standards within the framework of a circular economy.
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))


Agradecemos a la planta de cultivo de erizos de mar EriSea SA por proveernos del efluente necesario para realizar este trabajo así como también por apoyar la propuesta científica.Agradecemos el apoyo logístico y técnico de Jazmín y Wanda, Técnicas acuícolas de la planta. Agradecemos también a los financiamientos de investigación CYTCEH C240 y CT-5-PFI-2022, y PDTS UNPSJB 2019 022/21 y PICT 2021-I-INVI 00339, todos con IR: Martelli, Antonela.


Abubakar, F. B., Ibrahim, S., & Moruf, R. O. (2023). Phytoremediation of aquaculture wastewater: A review of microalgae bioremediation. Science World Journal, 18(1), 83–89.

Ansari, F. A., Singh, P., Guldhe, A., & Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Research, 21, 169–177.

Chaar, F. B., Fernández, J. P., Sepúlveda, L. R., & Rubilar, T. (2021). The influence of density on survival and larval development in the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea). Revista de Biología Tropical, 69(S1), 334–345.

Chan, W. Y., Oakeshott, J. G., Buerger, P., Edwards, O. R., & van Oppen, M. J. (2021). Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions. Global Change Biology, 27(9), 1737–1754.

Chatla, A., Ghouri, M. M., El Hassan, O. W., Mohamed, N., Prakash, A. V., & Elbashir, N. O. (2020). An experimental and first principles DFT investigation on the effect of Cu addition to Ni/Al2O3 catalyst for the dry reforming of methane. Applied Catalysis A: General, 602, 117699.

Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J., & Chang, J. S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.

Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Chaudhary, A. K., Alghasal, G., & Al-Jabri, H. M. S. (2019). Microalgal bioremediation of petroleum-derived low salinity and low pH produced water. Journal of Applied Phycology, 31, 435–444.

de Cassia Soares Brandão, B., Oliveira, C. Y. B., Dos Santos, E. P., de Abreu, J. L., Oliveira, D. W. S., da Silva, S. M. B. C., & Gálvez, A. O. (2023). Microalgae-based domestic wastewater treatment: a review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. Environmental Monitoring and Assessment, 195(11), 1384.

Fuhrmann, M., Georgiades, E., Cattell, G., Brosnahan, C., Lane, H., & Hick, P. (2021). Aquatic pathogens and biofouling: pilot study of ostreid herpesvirus 1 translocation by bivalves. Biofouling, 37(9–10), 949–963.

Goswami, R. K., Agrawal, K., Mehariya, S., & Verma, P. (2021). Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: an emerging and foreseeable sustainable approach. Environmental Science and Pollution Research, 29, 1–33.

Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. En W. L. Smith, & M. H. Chanley (Eds.), Culture of Marine Invertebrate Animals (pp. 29–60). Springer.

Gumbi, S. T., Kumar, A., & Olaniran, A. O. (2022). Lipid productivity and biosynthesis gene response of indigenous microalgae Chlorella sp. T4 strain for biodiesel production under different nitrogen and phosphorus load. BioEnergy Research, 15(4), 2090–2101.

Gupta, S., Pawar, S. B., & Pandey, R. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of the Total Environment, 687, 1107–1126.

John, E. M., Krishnapriya, K., & Sankar, T. (2020). Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture, 526, 735390.

Katiyar, R., Gurjar, B. R., Kumar, A., & Bharti, R. K. (2021). An integrated approach for phycoremediation of municipal wastewater and production of sustainable transportation fuel using oleaginous Chlorella sp. Journal of Water Process Engineering, 42, 102183.

Lage, S., Toffolo, A., & Gentili, F. G. (2021). Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden. Chemosphere, 276, 130122.

Liu, Y., Lv, J., & Feng, J. (2019). Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Journal of Chemical Technology and Biotechnology, 94(3), 900–910.

Moreno García, L., Gariépy, Y., Barnabé, S., & Raghavan, V. (2020). 7—Biorefinery of microalgae biomass cultivated in wastewaters. En R. P. Kumar, E. Gnansounou, J. K. Raman, & G. Baskar (Eds.), Refining Biomass Residues for Sustainable Energy and Bioproducts (pp. 149–180). Academic Press.

Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 707, 136080.

Onuoha, S., Idike, F., & Orakwe, L. (2012). Water supply resources for domestic purposes in Auchi Metropolis of Edo State, Nigeria. International Journal of Engineering and Technology, 2(6), 1032–1039.

Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2020). Pesca y acuicultura. FAO.

Rathod, H. (2014). Algae based wastewater treatment [Tesis de Maestría no publicada]. Indian Institute of Technology Roorkee.

Rearte, T. A., Rodriguez, N., Sabatte, F., & de Iorio, A. F. (2021). Unicellular microalgae vs. filamentous algae for wastewater treatment and nutrient recovery. Algal Research, 59, 102442.

Rubilar, T., & Cardozo, D. (2020). Los erizos de mar y su potencialidad en producir un tratamiento contra COVID-19. Atek Na [En la tierra], 9, 375–384.

Septory, R., & Triyatmo, B. (2016). The utilization of aquacultures wastewater as nutrient sources in Nannochloropsis oculata cultivation to prevent waters contamination in coastal area. AIP Conference Proceedings, 1755(1), 040004.

Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755.

Singhal, M., Jadhav, S., Sonone, S. S., Sankhla, M. S., & Kumar, R. (2021). Microalgae based sustainable bioremediation of water contaminated by pesticides. Biointerface Research in Applied Chemistry, 12, 149–169.

Stegmann, P., Londo, M., & Junginger, M. (2020). The circular bioeconomy: it’s elements and role in European bioeconomy clusters. Resources, Conservation & Recycling: X, 6, 100029.

Sutherland, D. L., & Bramucci, A. (2022). Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae. Journal of Environmental Management, 313, 115018.

Tomaselli, L. (2004). The microalgal cell. En A. Richmond (Ed.), Handbook of microalgal culture: biotechnology and Applied Phycology (pp. 1–19). Wiley.

Torekhanova, M. M., Akmukhanova, N. R., Zayadan, B. K., Sadvakasova, A. K., Bauenova, M. O., Seiilbek, S. N., Konisbai, A., & Ermekova, A. (2023). Study of the possibility of using agricultural wastewater for the accumulation of microalgae biomass. International Journal of Biology and Chemistry, 16(1), 104–112.

Ullmann, J., & Grimm, D. (2021). Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Organic Agriculture, 11(2), 261–267.

Velichkova, K., Sirakov, I., & Stoyanova, S. (2014). Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources. Scientific Bulletin of F. Series Biotechnology, 18, 83–88.

Velichkova, K. N., Sirakov, I. N., Beev, G. G., Denev, S., & Pavlov, D. (2016). Treatment of wastewater originating from aquaculture and biomass production in laboratory algae bioreactor using different carbon sources. Sains Malaysiana, 45(4), 601–608.

Wen, Z. Y., & Chen, F. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21(4), 273–294.

Wu, F., Lee, W. L., Chen, H., Gu, X., Chandra, F., Armas, F., Xiao, A., Leifels, M., Rhode, S. F., Wuertz, S., Thompson, J., & Alm, E. J. (2022). Making waves: wastewater surveillance of SARS-CoV-2 in an endemic future. Water Research, 219, 118535.

Wuang, S. C., Khin, M. C., & Chua, P. Q. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64.

Xing, Y., Luo, X., Liu, S., Wan, W., Huang, Q., & Chen, W. (2021). A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater. Journal of Cleaner Production, 311, 127514.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.