Abstract
Introduction: Sea urchin diseases have been documented in several locations worldwide, with reported occurrences of bacterial, protozoan, fungal, and algal infections.
Objective: This study aimed to investigate pathogen agents in populations of Arbacia lixula and Paracentrotus lividus along the coast of Gran Canaria Island (Central-East Atlantic, Spain).
Methods: Sampling was conducted at San Cristobal beach, on the Northeast side of the island, where sea urchins were manually collected from depths of 1-3 m during June, July, and October 2022. Swab samples were taken from the external and internal areas of the lesions and cultured on various media plates.
Results: Eight different pathogen agents, including bacteria and fungi, were identified, with Vibrio alginolyticus being the most frequently observed bacteria in all diseased sea urchin samples. Additionally, ciliated protozoans were found within the tests, potentially acting as opportunistic parasites.
Conclusions: This research provides a unique perspective on bald sea urchin disease by identifying a significant number of associated pathogens, including Candida, previously unreported in diseased organisms. Furthermore, the study highlights the presence of an inflammatory response in tissues with bacterial colonies, offering crucial insights into understanding this sea urchin disease.
References
Bauer, J. C., & Young, C. M. (2000). Epidermal lesions and mortality caused by vibriosis in deep-sea Bahamian echinoids: a laboratory study. Diseases of Aquatic Organisms, 39(3), 193–199. https://doi.org/10.3354/dao039193
Becker, P. T., Egea, E., & Eeckhaut, I. (2008). Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus. Journal of Invertebrate Pathology, 98(2), 136–147. https://doi.org/10.1016/j.jip.2007.12.002
Bizzini, A., & Greub, G. (2010). Matrix-assisted laser desorption ionization time-offlight mass spectrometry, a revolution in clinical microbial identification. Clinical Microbiology and Infection, 16 (11), 1614–1619. https://doi.org/10.1111/j.1469-0691.2010.03311.x
Clemente, S., Lorenzo-Morales, J., Mendoza, J. C., López, C., Sangil, C., Alves, F., Kaufmann, M., & Hernández, J. C. (2014). Sea urchin Diadema africanum mass mortality in the subtropical eastern Atlantic: role of waterborne bacteria in a warming ocean. Marine Ecology Progress Series, 506, 1–14. https://doi.org/10.3354/meps10829
Croxatto, A., Prod’hom, G., & Greub, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiology Reviews, 36(2), 380–407. https://doi.org/10.1111/j.1574-6976.2011.00298.x
Dabrowa, N., Landau, J. W., Newcomer, V. D., & Plunkett, O. A. (1964). A survey of tide-washed coastal areas of Southern California for fungi potentially pathogenic to man. Mycopathologia, 24(2), 137–50. https://doi.org/10.1007/BF02075556
Dumont, C. P., Himmelman, J. H., & Russell, M. P. (2004). Sea urchin mass mortality associated with algal debris from ice scour. In T. Heinzeller, & J. Nebelsick (Eds.), Echinoderms: München (pp. 177–182). Taylor and Francis Group.
Dyková, I., Lorenzo-Morales, J., Kostka, M., Valladares, B., & Pecková, H. (2011). Neoparamoeba branchiphila infections in moribund sea urchins Diadema aff. antillarum in Tenerife, Canary Islands, Spain. Diseases of Aquatic Organisms, 95(3), 225–231. https://doi.org/10.3354/dao02361
Federico, S., Glaviano, F., Esposito, R., Tentoni, E., Santoro, P., Caramiello, D., Costantini, D., & Zupo, V. (2023). The “Bald Disease” of the sea urchin Paracentrotus lividus: pathogenicity, molecular identification of the causative agent and therapeutic approach. Microorganisms, 11(3), 763. https://doi.org/10.3390/microorganisms11030763
Feehan, C. J., & Scheibling, R. E. (2014). Effects of sea urchin disease on coastal marine ecosystems. Marine Biology, 161, 1467–1485. https://doi.org/10.1007/s00227-014-2452-4
Francis-Floyd, R. (2020). Diagnostic methods for the comprehensive health assessment of the long-spined Sea urchin, Diadema antillarum [series of the Veterinary Medicine—Large Animal Clinical Sciences Department, UF/IFAS Extension, VM244]. Ask IFAS. https://edis.ifas.ufl.edu/publication/VM244
Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., Schlegel, R., Bensoussan, N., Turicchia, E., Sini, M., Gerovasileiou, V., Teixido, N., Mirasole, A., Tamburello, L., Cebrian, E., Rilov, G., Ledoux, J.B., Souissi, J. B., Khamassi, F., Ghanem, R., ... Harmelin, J. G. (2022). Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology, 28(19), 5708–5725. https://doi.org/10.1111/gcb.16301
Girard, D., Clemente, S., Toledo-Guedes, K., Brito, A., & Hernández, J. C. (2011). A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: analysis of potential links with environmental conditions. Marine Ecology, 33(3), 377–385. https://doi.org/10.1111/j.1439-0485.2011.00491.x
Gizzi, F., Jiménez, J., Schäfer, S., Castro, N., Costa, S., Lourenço, S., Canning-Clode, J., & Monteiro, J. (2020). Before and after a disease outbreak: tracking a keystone species recovery from a mass mortality event. Marine Environmental Research, 156, 104905. https://doi.org/10.1016/j.marenvres.2020.104905
Grech, D., Guala, I., & Farina, S. (2019). Sibling bald sea urchin disease affecting the edible Paracentrotus lividus (Echinodermata: Echinoidea) in Sardinia, Italy. PeerJ PrePrints, 7, e27644v2. https://doi.org/10.7287/peerj.preprints.27644v2
Grech, D., Mandas, D., Farina, S., Guala, I., Brundu, R., Cristo, B., Panzalis, P., Salati, F., & Carella, F. (2022). Vibrio splendidus clade associated with a disease affecting Paracentrotus lividus (Lamarck, 1816) in Sardinia (Western Mediterranean). Journal of Invertebrate Pathology, 192, 107783. https://doi.org/10.1016/j.jip.2022.107783
Hernández, J. C., Sangil, C., & Lorenzo-Morales, J. (2020). Uncommon southwest swells trigger sea urchin disease outbreaks in Eastern Atlantic archipelagos. Ecology and Evolution, 10(15), 7963–7970. https://doi.org/10.1002/ece3.6260
Hewson, I., Ritchie, I. T., Evans, J. S., Altera, A., Behringer, D., Bowman, E., Brandt, M., Budd, K. A., Camacho, R. A., Cornwell, T. O., Countway, P. D., Croquer, A., Delgado, G. A., Derito, C., Duermit-Moreau, E., Francis-Floyd, R., Gittens, S., Henderson, L., Hylkema, A., … Breitbart, M. (2023). A scuticociliate causes mass mortality of Diadema antillarum in the Caribbean Sea. Science Advances, 9(16), eadg3200. https://doi.org/10.1126/sciadv.adg3200
Hughes, T. P., Keller, B. D., Jackson, J. B. C., & Boyle, M. J. (1985). Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bulletin of Marine Science, 36(2), 377–384.
Jangoux, M. (1987). Diseases of Echinodermata. 1. Agents microorganisms and protistans. Diseases of Aquatic Organisms, 2(2), 147–162.
Jones, G. M., Hebda, A. J., Scheibling, R. E., & Miller, R. J. (1985). Histopathology of the disease causing mass mortality of sea urchins (Strongylocentrotus droebachiensis) in Nova Scotia. Journal of invertebrate pathology, 45(3), 260–271. https://doi.org/10.1016/0022-2011(85)90102-8
Lessios, H. A. (1988). Population dynamics of Diadema antillarum (Echinodermata: Echinoidea) following mass mortality in Panama. Marine Biology, 99, 515–526. https://doi.org/10.1007/BF00392559
Maes, P., & Jangoux, M. (1984). The bald-sea-urchin disease: a biopathological approach. Helgoländer Meeresuntersuchungen, 37, 217–224. https://doi.org/10.1007/BF01989306
Ministerio de Transporte, Movilidad y Agenda Urbana- Puertos del Estado. (2022, September 19). ‘La temperatura del Mediterráneo superó los 31 ºC este verano’. Puertos del Estado. https://www.puertos.es/es-es/Paginas/Noticias/TemperaturaMarVerano19092022.aspx#
Mira-Gutiérrez, J., & García-Martos, P. (1998). Vibrios de origen marino en patología humana. Revista AquaTIC, 2, 1–10.
Miyamoto, Y., Nakamuma, K., & Takizawa, K. (1961). Pathogenic halophiles. Proposals of a new genus” Oceanomonas” and of the amended species names. Japanese Journal of Microbiology, 5(4), 477–481. https://doi.org/10.1111/j.1348-0421.1961.tb00225.x
QGIS.org. (2023). QGIS Geographic Information System [Computer software]. QGIS Association. http://www.qgis.org
R Core Team. (2023). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
Salazar-Forero, C. E., Reyes-Batlle, M., González-Delgado, S., Lorenzo-Morales, J., & Hernández, J. C. (2022). Influence of winter storms on the sea urchin pathogen assemblages. Frontiers in Marine Science, 9, 812931. https://doi.org/10.3389/fmars.2022.812931
Sangil, C., & Hernández, J. C. (2022). Recurrent large-scale sea urchin mass mortality and the establishment of a long-lasting alternative macroalgae-dominated community state. Limnology and Oceanography, 67(S1), S430–S443. https://doi.org/10.1002/lno.11966
Scheibling, R. E., & Lauzon-Guay, J. S. (2010). Killer storms: North Atlantic hurricanes and disease outbreaks in sea urchins. Limnology and Oceanography, 55(6), 2331–2338. https://doi:10.4319/lo.2010.55.6.2331
Shaw, C. G., Pavloudi, C., Hudgell, M. A. B., Crow, R. S., Saw, J. H., Pyron, R. A., & Smith, L. C. (2023). Bald sea urchin disease shifts the surface microbiome on purple sea urchins in an aquarium. Pathogens and Disease, 81, ftad025. https://doi.org/10.1093/femspd/ftad025
Shaw, C. G., Pavloudi, C., Crow, R. S., Saw, J. H., & Smith, L. C. (2024). Spotting disease disrupts the microbiome of infected purple sea urchins, Strongylocentrotus purpuratus. BMC Microbiology, 24(1), 11. https://doi.org/10.1186/s12866-023-03161-9
Shimizu, M., Takaya, Y., Ohsaki, S., & Kawamata, K. (1995). Gross and histopathological signs of the spotting disease in the sea urchin Strongylocentrotus intermedius. Fisheries Science, 61(4), 608–613. https://doi.org/10.2331/fishsci.61.608
Siller-Ruiz, M., Hernández-Egido, S., Sánchez-Juanes, F., González-Buitrago, J. M., & Muñoz-Bellido, J. L. (2017). Métodos rápidos de identificación de bacterias y hongos. Espectrometría de Masas MALDI-TOF, medios cromogénicos. Enfermedades Infecciosas y Microbiología Clínica, 35(5), 303–313. https://doi.org/10.1016/j.eimc.2016.12.010
Sweet, M. (2020). Sea urchin diseases: effects from individuals to ecosystems. In J. M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 43, 4th ed., pp. 219–226). Elsevier. https://doi.org/10.1016/B978-0-12-819570-3.00012-3
Virwani, A., Rajeev, S., Carmichael-Branford, G., Freeman, M. A., & Dennis, M. M. (2021). Gross and microscopic pathology of West Indian sea eggs (Tripneustes ventricosus). Journal of Invertebrate Pathology, 179, 107526. https://doi.org/10.1016/j.jip.2020.107526
Wang, Y. N., Chang, Y. Q., & Lawrence, J. M. (2013). Disease in sea urchins. In J. M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 179–186). Elsevier. https://doi.org/10.1016/B978-0-12-396491-5.00012-5
Wang, Y., Feng, N., Li, Q., Ding, J., Zhan, Y., & Chang, Y. (2013). Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquaculture Research, 44(5), 691–700. https://doi.org/10.1111/j.1365-2109.2011.03073.x
Wang, Y., Wang, Q., Chen, L., Ding, R., Peng, Z., & Li, B. (2023). Pathogenicity and immune response of the sea urchin Mesocentrotus nudus to Vibrio coralliilyticus infection. Aquaculture, 572, 739570. https://doi.org/10.1016/j.aquaculture.2023.739570
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed). Springer-Verlag. https://doi.org/10.1007/978-3-319-24277-4
Zirler, R., Schmidt, L. M., Roth, L., Corsini-Foka, M., Kalaentzis, K., Kondylatos, G., Mavrouleas, D., Bardanis, E., & Bronstein, O. (2023). Mass mortality of the invasive alien echinoid Diadema setosum (Echinoidea: Diadematidae) in the Mediterranean Sea. Royal Society Open Science, 10(5), 230251. https://doi.org/10.1098/rsos.230251
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.