Abstract
Introduction: Urban ecosystems are spaces in the city that provide ecosystem services and house a wide diversity of species. One of the key components that maintain different types of processes is insects. Objective: To characterize insect communities in four parks in a district of Lima by analyzing their composition and structure in two seasons of the year. Methods: For this evaluation, two samplings (winter and summer) were carried out using four traps (pitfall, canopy malaise, ground-level malaise, and night trap). Results: The results show a) a high richness with 191 registered morphospecies, grouped into 12 orders and 8 functional groups; b) a low similarity between parks (less than 40% for the Jaccard index), which reveals a high spatial turnover; c) differences in community composition between winter and summer (temporal turnover), with greater richness and abundance of individuals in the warm season (139 morphospecies and 1214 individuals versus 105 morphospecies and 731 individuals for summer and winter respectively) and d) the variation of functional groups at both times of the year. Conclusion: The results invite us to consider this group of organisms as an indicator of climate change, also, to continue the study of insect diversity in urban ecosystems on a broader scale. The information must be considered by decision-makers to implement measures that allow maintaining this richness of species in a framework where citizens can value and get benefits by the important role of these organisms in the city.
References
Aponte, H. (2015). Ecosistemas potenciales para el turismo en la costa central de Lima y Callao: Oportunidades y perspectivas. Novum Otium, 1(1), 57-64.
Arafa, E., & Shestakov, L. (2020). Overview of Tachinid parasitoids classification (Tachinidae, Diptera). Research on Crops, 21(2), 415-423. https://doi.org/10.31830/2348-7542.2020.068
Arnett, R. H., Jr, Thomas, M. C., Skelley, P. E., & Frank, J. H. (2002). American Beetles, Volume II: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press.
Arnold, E. J. (2022). Biological Control Services from Parasitic Hymenoptera in Urban Agriculture. Insects, 13, 467. https://doi.org/10.3390/insects13050467
Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., MacGregor-Fors, I., McDonnell, M., Mörtberg, U., … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133330. https://doi.org/10.1098/rspb.2013.3330
Aucca, L., Aparicio, M., & Yabar-Landa, E. (2021). Sírfidos (DIPTERA: SYRPHIDAE) del campus universitario de Perayoc, Cusco, Perú. The Biologist, 19(2). https://doi.org/10.24039/rtb20211921145
Choi, S. (2008). Effects of Weather Factors on the Abundance and Diversity of Moths. Zoological Science, 25, 53-58. https://doi.org/10.2108/zsj.25.53
Csóka, G., Hirka, A., Szöcs, L., Móricz, N., Rasztovits, E., & Pödör, Z. (2018). Weather-dependent fluctuations in the abundance of the oak processionary moth, Thaumetopoea processionea (Lepidoptera: Notodontidae). European Journal of Entomology, 115, 249-255. http://dx.doi.org/10.14411/eje.2018.024
Davis, A. Y., Lonsdorf, E. V., Shierk, C. R., Matteson, K. C., Taylor, J. R., Lovell, S. T., & Minor, E. S. (2017). Enhancing pollination supply in an urban ecosystem through landscape modifications. Landscape and Urban Planning, 162, 157-166. https://doi.org/10.1016/j.landurbplan.2017.02.011
Dunn, L., Lequerica, M., Reid, C., & Latty, T. (2020). Dual ecosystem services of syrphid flies (Diptera: Syrphidae): pollinators and biological control agents. Pest Management Science, 76, 1973-1979. https://doi.org/10.1002/ps.5807
Fernández, F., & Sharkey, M., J. (2006). Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología, Bogotá D.C.
Gasca, A, H. J., & Higuera D, D. (2010). Protocolos y métodos de colecta para el estudio de artrópodos de dosel en bosques de niebla del neotrópico. Revista Colombiana de Ciencia Animal - RECIA, 2(2). https://doi.org/10.24188/recia.v2.n2.2010.320
Giraldo-Mendoza, A. E. (2021). Un estudio de artrópodos epigeos en entornos costeros con influencia urbana cerca de El Altet, sureste de España. Graellsia, 77(1), Article 1. https://doi.org/10.3989/graellsia.2021.v77.287
Gonzáles, S., & Aponte, H. (2022). Diversidad taxonómica y patrones de diversidad de la flora en humedales de la costa peruana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(180), Article 180.
Hammer, O., Harper, D., & Ryan, P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 1-9.
ISA. (2017). American National Standard Z133: Safety Requirements for Arboricultural Operations. International Society of Arboriculture.
Jepson, J. (2007). El compañero del trepador. Beaver Tree Publishing. https://aearboricultura.org/tienda/el-companero-del-trepador/
Juárez, G., & González, U. (2016). Coleópteros (INSECTA: COLEOPTERA) del campus de la ciudad universitaria de Piura, Perú. The Biologist, 14(2), Article 2. https://doi.org/10.24039/rtb201614297
Kane, B., & Ryan, H. D. (2009). Residual Strength of Carabiners Used by Tree Climbers. Arboriculture & Urban Forestry (AUF), 35(2), 75-79. https://doi.org/10.48044/jauf.2009.014
Kocsis, M., & Hufnagel, L. (2011). Impacts of Climate Change on Lepidoptera Species and Communities. Applied Ecology and Environmental Research, 9(1), 43-72. http://dx.doi.org/10.15666/aeer/0901_043072
Krahner, A., Schmidt, J., Maixner, M., Porten, M., & Schmitt, T. (2021). Evaluation of four different methods for assessing bee diversity as ecological indicators of agro-ecosystems. Ecological Indicators, 125, 107573. https://doi.org/10.1016/j.ecolind.2021.107573
León-López, S., & Ortiz, M. S. (2014). Aphididae (Hemiptera) de Rosa sp, Procedentes de Lima-Perú. Revista de Ciencias, 10. https://doi.org/10.31381/revista_ciencias.v10i0.577
Lequerica Tamara, M. E., Latty, T., Threlfall, C. G., & Hochuli, D. F. (2021). Major insect groups show distinct responses to local and regional attributes of urban green spaces. Landscape and Urban Planning, 216, 104238. https://doi.org/10.1016/j.landurbplan.2021.104238
Lewthwaite, J. M. M., Baiotto, T. M., Brown, B. V., Cheung, Y. Y., Baker, A. J., Lehnen, C., McGlynn, T. P., Shirey, V., Gonzalez, L., Hartop, E., Kerr, P. H., Wood, E., & Guzman, L. M. (2024). Drivers of arthropod biodiversity in an urban ecosystem. Scientific Reports, 14(1), 390. https://doi.org/10.1038/s41598-023-50675-3
Marschalek, D. A., & Deutschman, D. H. (2022). Differing insect communities and reduced decomposition rates suggest compromised ecosystem functioning in urban preserves of southern California. Global Ecology and Conservation, 33, e01996. https://doi.org/10.1016/j.gecco.2021.e01996
McAlpine, J. F., Peterson, B. V., Shewell, G. E., Teskey, H. J., Vockeroth, J. R., & Wood, D. M. (1981). Manual of Nearctic Diptera. En Research Branch, Agriculture Canada, eBooks. 28 (1). http://ci.nii.ac.jp/ncid/BA01454379
Moreno, C. E., Calderón-Patrón, J. M., Arroyo-Rodríguez, V., Barragán, F., Escobar, F., Gómez-Ortiz, Y., Martín-Regalado, N., Martínez-Falcón, A. P., Martínez-Morales, M. Á., Mendoza, E., Ortega-Martínez, I. J., Pérez-Hernández, C. X., Pineda, E., Pineda-López, R., Rios-Díaz, C. L., Rodríguez, P., Rosas, F., Schondube, J. E., & Zuria, I. (2017). Measuring biodiversity in the Anthropocene: A simple guide to helpful methods. Biodiversity and Conservation, 1-6. https://doi.org/10.1007/s10531-017-1401-1
Municipalidad Distrital de Miraflores. (2023). Diagnóstico de brechas de infraestructura y servicios. Municipalidad Distrital de Miraflores, gerencia de Planificación y Presupuesto. https://www.miraflores.gob.pe/wp-content/uploads/2023/01/DIAGNOSTICO_DE_BRECHAS_SERVICIOS.pdf
Nguyen, H., Schmack, J. M., & Egerer, M. (2023). Drivers of cultivated and wild plant pollination in urban agroecosystems. Basic and Applied Ecology, 72, 82-92. https://doi.org/10.1016/j.baae.2023.09.003
Nilon, C. H., Aronson, M. F. J., Cilliers, S. S., Dobbs, C., Frazee, L. J., Goddard, M. A., O’Neill, K. M., Roberts, D., Stander, E. K., Werner, P., Winter, M., & Yocom, K. P. (2017). Planning for the Future of Urban Biodiversity: A Global Review of City-Scale Initiatives. BioScience, 67(4), 332-342. https://doi.org/10.1093/biosci/bix012
Noriega, J. A., Hortal, J., Azcárate, F. M., Berg, M. P., Bonada, N., Briones, M. J. I., Del Toro, I., Goulson, D., Ibanez, S., Landis, D. A., Moretti, M., Potts, S. G., Slade, E. M., Stout, J. C., Ulyshen, M. D., Wackers, F. L., Woodcock, B. A., & Santos, A. M. C. (2018). Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 26, 8-23. https://doi.org/10.1016/j.baae.2017.09.006
Núñez, J., M. (2021). Análisis espacial de las áreas verdes urbanas de la Ciudad de México. Economía, Sociedad y Territorio, 67, 803-833. http://dx.doi.org/10.22136/est20211661
Oliver, Ian & Beattie, Andrew. (1996). Invertebrate Morphospecies as Surrogates for Species: A Case Study. Conservation Biology, 10, 99-109. 10.1046/j.1523-1739.1996.10010099.x.
Płaskonka, B., Zych, M., Mazurkiewicz, M., Skłodowski, M., & Roguz, K. (2024). Pollinator-mediated connectivity in fragmented urban green spaces—Tracking pollen grain movements in the city center. Acta Oecologica, 123, 103985. https://doi.org/10.1016/j.actao.2024.103985
Rossi-La Torre, C. R. (2022). Comparación de la riqueza de insectos utilizando dos métodos de recolección en un humedal costero del Pacífico suramericano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(181), Article 181. https://doi.org/10.18257/raccefyn.1765
Salim, M., Gökçe, A., Naqqash, M., & Bakhsh, A. (2015). An overview of biological control of economically important lepidopteron pest with parasitoids. Journal of Entomology and Zoology Studies, 4(1), 354-362.
Stępniewska, M. (2021). The capacity of urban parks for providing regulating and cultural ecosystem services versus their social perception. Land Use Policy, 111, 105778. https://doi.org/10.1016/j.landusepol.2021.105778
Trigos-Peral, G., Maák, I. E., Schmid, S., Chudzik, P., Czaczkes, T. J., Witek, M., Casacci, L. P., Sánchez-García, D., Lőrincz, Á., Kochanowski, M., & Heinze, J. (2024). Urban abiotic stressors drive changes in the foraging activity and colony growth of the black garden ant Lasius niger. Science of The Total Environment, 915, 170157. https://doi.org/10.1016/j.scitotenv.2024.170157
Valencia V., L. (2009). Natural enemies of Aleurodicus juleikae Bondar (Hemiptera: Aleyrodidae) in an urban environment of Lima, Perú. Idesia, 27(2), 79-89.
Vásquez, A. (2016). Infraestructura verde, servicios ecosistémicos y sus aportes para enfretar el cambio climático en ciudades: el caso del corredor ribereño del río Mapocho en Santiago de Chile. Revista de Geografía Norte Grande, 63, 63-86. http://dx.doi.org/10.4067/S0718-34022016000100005
Venn, J., & Niemelä, K. (2004). Ecology in a multidisciplinary study of urban green space: the URGE project. Boreal Environment Research, 9, 479-489.
Zeng, H., Wang, J., Guan, M., Lu, Y., Liu, H., & Zhao, D. (2023). Effects of vegetation structure and environmental characteristics on pollinator diversity in urban green spaces. Urban Forestry & Urban Greening, 84, 127928. https://doi.org/10.1016/j.ufug.2023.127928
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Revista de Biología Tropical