Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Effect of the Limón earthquake (1991) on the biodiversity of marine macroalgae according to records from the USJ Herbarium for the Southern Caribbean of Costa Rica
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Supplementary Files

PDF-MS1 (Español (España))
DOC-MS1 (Español (España))

Keywords

phycology, ecology, disturbance, regeneration, coastline uplift, biological collections.
ficología, ecología, perturbación, regeneración, levantamiento tectónico, colecciones biológicas.

How to Cite

Amador-Salas, L., Mena-Morales, M., Leandro-Arroyo, M., Molina-Bolaños, A., & Fernández-García, C. (2025). Effect of the Limón earthquake (1991) on the biodiversity of marine macroalgae according to records from the USJ Herbarium for the Southern Caribbean of Costa Rica. Revista De Biología Tropical, 73(S2), e64689. https://doi.org/10.15517/rev.biol.trop.v73iS2.64689

Abstract

Introduction: On April 22, 1991, the third strongest recorded earthquake in the history of Costa Rica wreaked havoc on communities in the Limón province. Along with a great cost to human life and the economy of the region, the earthquake had another interesting effect: the uplift of the coastline. The ecological consequences of this event are considered some of the most impactful of the Limón earthquake, however, little is known about the true changes that occurred within communities of aquatic organisms, including marine macroalgae in the aftermath of this event.

Objective: To determine if there was an effect of the 1991 Limón earthquake on the composition of algal communities in the region extending from Limón to Manzanillo.

Methods: Data of algal specimens collected in three Caribbean localities (Limón, Cahuita, Manzanillo) between 1962-2021 was analyzed from the USJ Herbarium database. Intervals of five years were used to evaluate disturbances before and after the 1991 earthquake. Geographic-temporal differences were assessed using Bray-Curtis index based on the transformed data. The matrix was analyzed implementing a nMDS and a PERMANOVA. A SIMPER test was applied to determine the families with most variation followed by an ANOSIM to describe it.

Results: A total of 1086 algal specimens were analyzed. Among the sites, Punta Cahuita had the highest diversity and Punta Uva the lowest. The nMDS indicates that there is a difference in the composition of the algal communities in the locations consulted in the five year interval after the phenomenon compared to the other temporal periods. The Gracilariaceae family presented the most variation between sites.

Conclusions: The changes found in the composition of the algal community in the Caribbean region cannot be attributed only to the natural phenomenon described previously. There are several other environmental or anthropogenic components that should be considered, as they might influence the dynamics seen within the community, causing changes individually or in interaction with other factors.

https://doi.org/10.15517/rev.biol.trop..v73iS2.64689
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Alvarado, J. J., Fernández, C., & Nielsen, V. (2006). Arrecifes y comunidades coralinas. En V. Nielsen-Muñoz & M. A. Quesada-Alpízar (Eds.), Ambientes marino costeros de Costa Rica (pp. 51–67). Comisión Interdisciplinaria Marino Costera de la ZEE de Costa Rica, Informe Técnico. CIMAR, CI, TNC.

Aronson, R. B., Precht, W. F., Macintyre, I. G., & Toth, L. T. (2012). Catastrophe and the life span of coral reefs. Ecology, 93(2), 303–313. https://doi.org/10.1890/11-1037.1

Barinova, S., & Alster, A. (2021). Algae and cyanobacteria diversity and bioindication of long-term changes in the Hula Nature Reserve, Israel. Diversity, 13(11), 2–20. https://doi.org/10.3390/d13110583

Barrantes, G., Vahrson, W. G., & Mora, S. (2021). Cambios geomorfológicos e hidrológicos inducidos por el terremoto (Mw 7, 7) del 22 de abril de 1991 en la provincia de Limón, Costa Rica. Revista Geológica de América Central, 65, 396–415. https://revistas.ucr.ac.cr/index.php/geologica/article/view/46881

Bernecker, A. (2009). Marine Benthic Algae. En I. S. Wehrtmann & J. Cortés (Eds.), Marine biodiversity of Costa Rica, Central America (Vol. 86, pp. 109–117). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8278-8_5

Britton-Simmons, K. H. (2006). Functional group diversity, resource preemption and the genesis of invasion resistance in a community of marine algae. Oikos, 113(3), 395–401. https://doi.org/10.1111/j.2006.0030-1299.14203.x

Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2nd ed.). PRIMER-E.

Coll, M., Fonseca, A. C., & Cortés, J. (2001). El manglar y otras asociaciones vegetales de la laguna de Gandoca, Limón, Costa Rica. Revista de biología tropical, 49(Supl. 2), 321–329. https://revistas.ucr.ac.cr/index.php/rbt/article/view/26338

Cortés, J., & Jiménez, C. (2003). Past, present and future of the coral reefs of the Caribbean coast of Costa Rica. En J. Cortés (Ed.), Latin American coral reefs (pp. 223–239). Elsevier. https://doi.org/10.1016/b978-044451388-5/50011-4

Cortés, J., & León, A. (2002). Arrecifes coralinos del Caribe de Costa Rica. Editorial INBio.

Cortés, J., Fonseca, A.C., Nivia-Ruiz, J., Nielsen-Muñoz, V., Samper-Villarreal, J., Salas, E., Martínez, S., & Zamora-Trejos, P. (2010). Monitoring coral reefs, seagrasses and mangroves in Costa Rica (CARICOMP). Revista de Biología Tropical, 58(Supl. 3), 1–22. https://doi.org/10.15517/rbt.v58i0.20036

Cortés, J., Soto, R., & Jiménez, C. (2011). Efectos ecológicos del terremoto de Limón. Revista Geológica de América Central, (Especial), 187–192. https://doi.org/10.15517/rgac.v0i0.13450

El Gamal, A. A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1), 1–25. https://doi.org/10.1016/j.jsps.2009.12.001

Evelpidou, N., Karkani, A., & Kampolis, I. (2021). Relative Sea Level Changes and Morphotectonic Implications Triggered by the Samos Earthquake of 30th October 2020. Journal of Marine Science and Engineering, 9(1), 40. https://doi.org/10.3390/jmse9010040

Flores, E. S. (1991). Geografía de Costa Rica. Euned.

Kahle, D., & Wickham, H. (2013). ggmap: Spatial visualization with ggplot2. The R Journal, 5(1), 144–161. https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

Kawamura, T., Takami, H., Hayakawa, J., Won, N.-I., Muraoka, D., & Kurita, Y. (2014). Changes in abalone and sea urchin populations in rocky reef ecosystems on the Sanriku coast damaged by the massive tsunami and other environmental changes associated with the Great East Japan Earthquake in 2011. Global Environmental Research, 18, 47–56. https://doi.org/10.1111/fog.12191

Meghraoui, M., Maouche, S., Chemaa, B., Cakir, Z., Aoudia, A., Harbi, A., Alasset, P.-J., Ayadi, A., Bouhadad, Y., & Benhamouda, F. (2004). Coastal uplift and thrust faulting associated with the Mw = 6.8 Zemmouri (Algeria) earthquake of 21 May, 2003. Geophysical Research Letters, 31(19), L19605. https://doi.org/10.1029/2004gl020466

Muñoz-Simon, N., Piedra-Castro, L., Jiménez-Montealegre, R., Pereira-Chaves, J., Guevara-

Mora, M., & Piedra-Marín, G. (2020). Efecto de las descargas del emisario submarino de aguas residuales de la ciudad de Limón sobre la calidad del agua, abundancia y diversidad del fitoplancton en los alrededores de isla Uvita, Costa Rica. Revista de Ciencias Marinas y Costeras, 12(2), 115–141. https://doi.org/10.15359/revmar.12-2.6

Muraoka, D., Tamaki, H., Takami, H., Kurita, Y., & Kawamura, T. (2017). Effects of the 2011 Great East Japan Earthquake and tsunami on two kelp bed communities on the Sanriku coast. Fisheries Oceanography, 26(2), 128–140. https://doi.org/10.1111/fog.12198

Museo Nacional de Costa Rica. (2022). Descripción de Cahuita. En Ecosistema Cahuita – Historia Natural – Investigaciones. https://www.museocostarica.go.cr/nuestro-trabajo/investigaciones/historia-natural/cahuita/informacion/

Nishenko, S., Camacho, E., Astorga, A., Morales, L. D., & Preuss, J. (2021). The 22 April 1991 Limón, Costa Rica tsunami field survey. Revista Geológica de América Central, 65, 1–16. https://revistas.ucr.ac.cr/index.php/geologica/article/view/47001

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G., Solymos, P., Stevens, H., Szoecs, E. & Wagner, H. (2020). Vegan: Community ecology package (Version 2.5-7) [Paquete R]. https://github.com/vegandevs/vegan

Orchard, S., Fischman, H. S., Gerrity, S., Alestra, T., Dunmore, R., & Schiel, D. R. (2021). Threshold effects of relative sea-level change in intertidal ecosystems: Empirical evidence from earthquake-induced uplift on a rocky coast. GeoHazards, 2(4), 302–320. https://doi.org/10.3390/geohazards2040016

Quesada-Román, A. (2016). Impactos geomorfológicos del Terremoto de Limón (1991; ms= 7.5) y consideraciones para la prevención de riesgos asociados en Costa Rica. Revista Geográfica de América Central, 1(56), 93–111. https://doi.org/10.15359/rgac.1-56.4

Quesada-Román, A. (2021). Revisión de los efectos geomorfológicos del terremoto de Limón en 1991. Revista Geológica de América Central, 65, 1–13. https://revistas.ucr.ac.cr/index.php/geologica/article/view/46697

R Core Team. (2023). R: A language and environment for statistical computing. (Versión 4.3.2) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/

Ramírez-Herrera, M. T., & Zamorano-Orozco, J. J. (2002). Coastal uplift and mortality of coralline algae caused by a 6.3Mw earthquake, Oaxaca, Mexico. Journal of Coastal Research, 18(1), 75–81. http://www.jstor.org/stable/4299055

Schiel, D. R., Gerrity, S., Orchard, S., Alestra, T., Dunmore, R. A., Falconer, T., Thomsen, M. S., & Tait, L. W. (2021). Cataclysmic disturbances to an intertidal ecosystem: Loss of ecological infrastructure slows recovery of biogenic habitats and diversity. Frontiers in Ecology and Evolution, 9, 767548. https://doi.org/10.3389/fevo.2021.767548

Terada, R., Inoue, S., & Nishihara, G. N. (2013). The effect of light and temperature on the growth and photosynthesis of Gracilariopsis chorda (Gracilariales, Rhodophtya) from geographically separated locations of Japan. Journal of Applied Phycology, 25(6), 1863–1872. https://doi.org/10.1007/s10811-013-0030-7

Thomsen, M. S., Mondardini, L., Thoral, F., Gerber, D., Montie, S., South, P. M., Orchard, S., Alestra, T., & Schiel, D. R. (2021). Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Diversity and Distributions, 27(12), 2369–2383. https://doi.org/10.1111/ddi.13407

Wehrtmann, I. S., Cortés, J., & Echeverría-Sáenz, S. (2009). Marine biodiversity of Costa Rica: Perspectives and conclusions. En I. S. Wehrtmann & J. Cortés (Eds.), Marine biodiversity of Costa Rica, Central America (Vol. 86, pp. 467–482). Springer. https://doi.org/10.1007/978-1-4020-8278-8_49

Weis, J. J., Madrigal, D. S., & Cardinale, B. J. (2008). Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PloS one, 3(7), e2825. https://doi.org/10.1371/journal.pone.0002825

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.