Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Understanding trophic relationships among Caribbean sea urchins
PT 64-2 JUN 2016
PDF
HTML

Keywords

Stable isotopes
trophic ecology
Bayesian mixing models
sea urchins
Puerto Rico.
Isótopos estables
ecología trófica
modelos de mezcla
erizos de mar
Puerto Rico.

How to Cite

Rodriguez Barreras, R., Cuevas, E., Cabanillas-Terán, N., & Branoff, B. (2016). Understanding trophic relationships among Caribbean sea urchins. Revista De Biología Tropical, 64(2), 837–848. https://doi.org/10.15517/rbt.v64i2.19366

Abstract

The species Echinometra lucunter, Echinometra viridis, Lytechinus variegatus, Tripneustes ventricosus, and Diadema antillarum are the most common sea urchins of littoral habitats in the Caribbean. T. ventricosus and L. variegatus are associated with seagrass beds, while the other three species usually inhabit hardground substrates. Food preferences of these species are well documented and they are commonly accepted as being primarily herbivorous-omnivorous; nevertheless, few of them have previously been characterized isotopically. We used this approach for assessing the isotopic characterization of five echinoids. We established the trophic position of two groups of co-occurring species and quantified the contribution of food resources in the diet of Echinometra lucunter, considered the most common sea urchin in the Caribbean region. The species T. ventricosus and D. antillarum showed the highest values of δ15N. Sea urchins exhibited similar values of δ13C varying from -11.6 ± 0.63 to -10.4 ± 0.99%. The echinoid E. lucunter displayed the lowest values of carbon, from -15.40 ± 0.76%. Significant differences among species were found for δ15N and δ13C. Seaweed communities exhibited no differences among sites for overall δ15N (F= 1.300, df= 3, p= 0.301), but we found spatial differences for δ13C (F= 7.410, df= 3, p= 0.001). The ellipse-based metrics of niche width analysis found that the hardground biotope species (D. antillarum, E. lucunter, and E. viridis) did not overlap each other. Similar results were obtained for the co-occurring species of the seagrass biotope; however, the distance between these species was closer than that of the hardground biotope species. The Bayesian mixing models run for E. lucunter at all four localities found differences in food resources contribution. The algae D. menstrualis, C. crassa and B. triquetrum dominated in CGD; whereas C. nitens, Gracilaria spp., and D. caribaea represented the main contributor algae to the diet of E. lucunter at LQY. In Culebra Island, no dominance of any particular algae was detected in TMD, where six of the eight species exhibited a similar contribution. Similarities in δ15N between D. antillarum and T. ventricosus may hint towards a similar trophic level for these species, although T. ventricosus is widely accepted as an omnivore, while D. antillarum is considered a generalist herbivore. The lack of overlap among species in the two biotopes seems to indicate a resource partitioning strategy to avoid niche competition among co-occurring species. 

https://doi.org/10.15517/rbt.v64i2.19366
PDF
HTML

References

Barrios, J., & Reyes, J. (2009). Hábitos alimenticios de Tripneustes ventricosus (Lamarck 1816) (Echinodermata, Echinoidea) en isla la Tortuga, Venezuela. Recursos Marinos Acuíferos, 2, 583-589.

Ben-David, M., & Schell, D. M. (2001). Mixing models in analyses of diet using multiple stable isotopes: a response. Oecologia, 127, 180-184.

Boecklen, W. J., Yarnes, C. T., Cook, B. A., & James, A. C. (2011). On the use of stable isotopes in trophic ecology. Annual Review in Ecology and Systematics, 42, 411-440.

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations (with discussion). Journal of the Royal Statistical Society B., 26, 211-252.

Bunn, S. E., Loneragan, N. R., & Kempster, M. A. (1995). Effects of Acid Washing on Stable Isotope Ratios of C and N in Penaeid Shrimp and Seagrass: Implications for Food-Web Studies Using Multiple Stable Isotopes. Limnology and Oceanography, 40(3), 622-625.

Cabanillas-Terán, N. (2009). Ecología y estatus trófico del erizo de mar Diadema antillarum (Philippi, 1845) en los fondos rocosos de las Islas Canarias (Gran Canaria, España). (Tesis doctoral). Universidad de las Palmas de Gran Canaria, España.

Caraveo-Patiño, J., & Soto, L. (2005). Stable carbon isotope ratios for the gray whale (Eschrichtius robustus) in the breeding grounds of Baja California Sur, México. Hydrobiologia, 539, 99-107.

Clark, J. J., & Wilcock, P. R. (2000). Effects of land-use change on channel morphology in northeastern Puerto Rico. GSA Bulletin, 112(12), 15.

Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223-253.

Caut, S., Angulo, E., & Courchamp, F. (2008). Discrimination factors (δ15N and δ13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology, 22, 255-263.

De Niro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45, 341-351.

Fry, B., & Sherr, E. B. (1989). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contribution to Marine Science, 27, 13-47.

Hawkins, C. M. (1981). Efficiency of organic matter absorption by the tropical echinoid Diadema antillarum Philippi fed non-macrophytic algae. Journal of Experimental Marine Biology and Ecology, 49(2), 245-253.

Hendler, G., Miller, J. E., Pawson, D. L., & Kier, P. M. (1995). Sea Stars, Sea Urchins, and Allies. Echinoderms of Florida and the Caribbean. Smithsonian Institution Press.

Hernández, J. C., Brito, A., García, N., Gil-Rodríguez, M. C., Herrera, G., Cruz-Reyes, A., & Falcón, J.M. (2006). Spatial and seasonal variation of the gonad index of Diadema antillarum (Echinodermata: Echinoidea) in the Canary Islands. Scientia Marina, 70(4), 689-698.

Herrera-López, G., Cruz-Reyes, A., Hernández, J. C., García, N., González-Lorenzo, G., Gil-Rodríguez, M. C., Brito, A., & Falcón, J. M. (2004). Alimentación y diversidad algal en la dieta del erizo Diadema antillarum en Tenerife. Revista Academia Canarias Ciencias, 15(3/4), 129-141.

Hobson, K. A., & Sease, J. L. (1998). Stable isotope analyses of tooth annuli reveal temporal dietary records: an example using Steller sea lions. Marine Mammal Science, 14, 116-129.

Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595-602.

Karlson, R. H. (1983). Disturbance and monopolization of a spatial resource by Zoanthus sociatus (Coelenterata, Anthozoa). Bulletin of Marine Science, 33, 118-131.

Keller, B. D. (1983). Coexistence of sea urchins in seagrass meadows: an experimental analysis of competition and predation. Ecology, 64(6), 1581-1598.

Klinger, T. S., Hsieh, H. L., Pangallo, R. A., Chen, C. P., & Lawrence, J. M. (1986). The effect of temperature on feeding, digestion, and absorption of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Physiological Zoology, 59(3)332-336.

Lawrence, J. M., Lawrence, A. L., & Watts, S. A. (2013). Feeding, digestion, and digestibility of sea urchins. In J. M. Lawrence (Ed.), Sea Urchins, Biology and Ecology (Chapter 9, pp. 135-154). Amsterdam: Elsevier BV.

Lewis, J. B. (1964). Feeding and digestion in the tropical sea urchin Diadema antillarum Philippi. Canadian Journal of Zoology, 42(4), 549-557.

Littler, D. S., & Littler, M. M. (2000). Caribbean reef plants. Washington, DC: Offshore Graphics Inc.

Mahon, R., & Parker, C. (1999). Barbados sea eggs, past, present and future. Fisheries Division, Ministry of Agriculture and Rural Development, Barbados Fisheries Management Plan, Public Information Document.

McCutchan, J. H., Lewis, W. M., Kendall, C., & McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378-390.

McGlathery, K. J. (2001). Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. Journal of Phycology, 37, 453-56.

McPherson, B. F. (1969). Studies on the biology of the tropical sea urchins Echinometra lucunter and Echinometra viridis. Bulletin of Marine Science, 19, 194-213.

Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food hains: further evidence and the relation between 15N and animal age. Geochimestry and Cosmochimestry Acta, 48, 1135-1140.

Nixon, S. W., Ammerman, J. W., Atkinson, L. P., Berounsky, V. M., Billen, G., Boicourt, W. C., & Seitzinger, S. P. (1996). The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry, 35, 141-180.

Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLOS one, 5(3), 1-5.

Parnell, A., & Jackson, A. (2013). Siar: Stable Isotope Analysis in R. R package version 4.2. Downloaded from http//CRAN.Rproject.org/package=siar

Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review in Ecology and Systematic, 18, 293-320.

Peterson, B. J., Howarth, R. W., & Garritt, R. H. (1985). Multiple stable isotopes used to trace the flow of organic matter flow in estuarine food webs. Science, 227, 1361-1363.

Pinnegar, J. K., & Polunin, N. V. C. (2000). Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia, 122(3), 399-409.

Phillips, D. (2012). Converting isotope values to diet composition: the use of mixing models. Journal of Mammalogy, 93(2), 342-352.

Post, D. M. (2002). Using stable isotopes to estimate trophic position models, methods, and assumptions. Ecology, 83(3), 703-718.

Prado, P. P., Alcoverro, T., & Romero, J. (2010). Influence of nutrients in the feeding ecology of seagrass (Posidonia oceanica L.) consumers: a stable isotopes approach. Marine Biology, 157, 715-724.

Prado, P., Carmichael, R. H., Watts, S. A., Cebria, J., & Heck, Jr. K. L. (2012). Diet-dependent δ13C and δ15N fractionation among sea urchin Lytechinus variegatus tissues: implications for food web models. Marine Ecology Progress Series, 462, 175.

R Development Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org/

Rezende, C. E., Lacerda, L. D., Ovall, A. R. C., Silva, C. A. R., & Martinelli, L. A. (1990). Nature of POC transport in a mangrove ecosystem: a carbon stable isotopic study. Estuarine, Coastal and Shelf Science, 30(6), 641-645.

Rodríguez, S. R. (2003). Consumption of drift kelp by intertidal populations of the sea urchin Tetrapygus niger on the central Chilean coast: possible consequences at different ecological levels. Marine Ecology Progress Series, 251, 141-151.

Rodríguez-Barreras, R., Cuevas, E., Cabanillas-Terán, N., & Sabat, A. M. (2015). Potential omnivory of the sea urchin Diadema antillarum? Regional Studies in Marine Science, 2, 11-18.

Rodríguez-Barreras, R., Pérez, M. E., Williams, S. M., Mercado-Molina, A. E., & Sabat, A. M. (2014). Higher population densities of the sea urchin Diadema antillarum linked to wave sheltered areas in north Puerto Rico Archipelago. Journal of the Marine Biological Association of the U.K., 94(8), 1661-1669.

Rotjan, R. D., & Lewis, S. M. (2008). Impact of coral predators on tropical reefs. Marine Ecology Progress Series, 367, 73-91.

Semmens, B. X., Moore, J. W., & Ward, E. J. (2009). Improving Bayesian isotope mixing models: a response to. Ecology Letters, 12, E6-E8.

Serafy, D. K. (1979). Echinoids (Echinodermata: Echinoidea). Memoirs of the Hourglass Cruises, 5, 120.

Solomon, C. T., Carpenter, S. R., Clayton, M. K., Cole, J. J., Coloso, J. J., Pace, M. L., Vander Zanden, M. K., & Weidel, B. C. (2011). Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology, 92, 1115-1125.

Szepanski, M. M., Ben-David, M., & Van Ballenberghe, V. (1999). Assessment of anadromous salmon resources in the diet of the Alexander Archipelago wolf using stable isotope analysis. Oecologia, 120, 327-335.

Tertschnig, W. P. (1989). Diel activity patterns and foraging dynamics of the sea urchin Tripneustes ventricosus in a tropical seagrass community and a reef environment (Virgin Islands). Marine Ecology, 10, 3-21.

Tewfik, A., Rasmussen, J., & McCann, K. S. (2005). Anthropogenic enrichment alters a marine benthic food web. Ecology, 86(10), 2726-2736.

Tomas, F., Alvarez-Cascos, D., Turon, X., & Romero, J. (2006). Differential element assimilation by sea grass urchin Paracentrotus lividus in seagrass beds: implications for trophic interactions. Marine Ecology Progress Series, 306, 125-131.

Trenzado, C. E., Hidalgo, F., Villanueva, D., Furné, M., Díaz-Casado, M. E., Merino, R., & Sanz, A. (2012). Study of the enzymatic digestive profile in three species of Mediterranean sea urchins. Aquaculture, 344, 174-180.

U. S. G. S. (1996). Atlas of ground-water resources in Puerto Rico and the U.S. Virgin Islands. T. D. Veve and B. E. Taggart (Eds.). Water resources investigation report (94-4198, 151 p.).

Van-Dover, C. L., Grassle, J. F., Fry, B., Garrit, R. H., & Starczak, V. R. (1992). Stable isotopes evidence for entry of sewage-derived organic material into a deep-sea food web. Organic Geochemistry, 27, 103-113.

Vander-Zanden, M. J., & Rasmussen, J. B. (2001). Variation in δ15Ν and δ13 C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography, 46(8), 2061-2066.

Vanderklift, M. A., & Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia, 136, 169-182.

Vanderklift, M. A., Kendrick, G. A., & Smith, A. J. (2006). Differences in trophic position among sympatric sea urchin species. Estuarine, Coastal and Shelf Science, 66, 291-297.

Villinski, J. C., Hayes, J. M., Villinski, J. T., Brassell, S. C., & Raff, R. A. (2004). Carbon-isotopic shifts associated with heterotrophy and biosynthetic pathways in direct and indirect-developing sea urchins. Marine Ecology Progress Series, 275, 139-151.

Wangensteen, O. S., Turón, X., García-Cisneros, A., Recasens, M., Romero, J., & Palacín, C. (2011). A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Marine Ecology Progress Series, 441, 117-128.

Wing, S. R., McLeod, R. J., Clark, K. L., & Frew, R. D. (2008). Plasticity in the diet of two echinoderm species across an ecotone: microbial recycling of forest litter and bottom-up forcing of populations structure. Marine Pollution Bulletin, 360, 115-123.

Wolf, N., Scott, A., & Martínez del Río, C. (2009). Nutritional ecology: Ten years of experimental animal isotopic ecology. Functional Ecology, 23, 17-26.

Zar, J. H. (2010). Biostatistical analysis (5th Edition). Upper Saddle River, Prentice Hall, Upper Saddle River, New Jersey.

Zieman, J. C., Macko, S. A., & Mills, A. L. (1984). Role of seagrasses and mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bulletin of Marine Science, 35(3), 380-392.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Revista de Biología Tropical

Downloads

Download data is not yet available.