Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil
PDF (Español (España))
HTML (Español (España))

Keywords

Azotobacter
Azospirillum
tropical grass
weathered petroleum
phytoremediation
Azotobacter
Azospirillum
pasto tropical
petróleo intemperizado
fitorremediación.

How to Cite

Arias Trinidad, A., Rivera Cruz, M. del C., Roldán Garrigós, A., Aceves Navarro, L. A., Quintero-Lizaola, R., & Hernández Guzmán, J. (2017). Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil. Revista De Biología Tropical, 65(1), 21–30. https://doi.org/10.15517/rbt.v65i1.22967

Abstract

The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 mg.kg-1 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 mg.kg-1 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 mg.kg-1 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 mg.kg-1 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63 and 89 g in fresh and weathered petroleum, respectively; had no significant differences with the control (p≤0.05). The PDH reached values of 66 to 87 % both TPH-F and TPH-W at six months, respectively. These results demonstrated the ability the L. hexandra rhizosphere to stimulate the high NFB density, vegetal biomass production and phytoremediation of contaminated soils (with fresh and weathered petroleum), in a tropical waterlogging environment.
https://doi.org/10.15517/rbt.v65i1.22967
PDF (Español (España))
HTML (Español (España))

References

Acuña, A. J., Pucci, O. H., & Pucci, G. N. (2012). Effect of nitrogen deficiency in the biodegradation of aliphatic and aromatic hydrocarbons in patagonian contaminated soil. International Journal of Research and Reviews in Applied Sciences, 11(3), 470-476.

Aparicio, R., González-Ronquillo, M., Torres, R., Astudillo, L., Córdova, L., & Carrasquel, J. (2007). Degradabilidad de los pastos lambedora (Leersia hexandra) y paja de agua (Hymenachne amplesicaulis) en cuatro épocas del año de una sábana inundable del estado Apure, Venezuela. Zootecnia Tropical, 25(3), 225-228.

Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7-21.

Capó, M. A. (2007). Principios de ecotoxicología: diagnóstico, tratamiento y gestión del medio ambiente. Madrid, España: Editorial Tebar.

Caravaca, F., & Roldan, A. (2003). Assessing changes in physical and biological properties in a soil contaminated by oil sludges under semiarid Mediterranean conditions. Geoderma, 117(1), 53-61.

Chávez-Rodríguez, L. (2015). Phytoremediation of lead polluted soils with native plant species. IOSR Journal of Environmental Science, Toxicology and Food Technology, 9(4), 42-49.

Ciotti, E. M., Castelán, M. E., Hack, C. M., Porta, M., & González, A. M. (2014). Tolerancia de leguminosas herbáceas estivales a condiciones de anegamiento temporal. Tropical Grasslands, 2(1), 278-286.

Döbereiner, J., Marriel, I. E., & Nery, M. (1966). Ecological distribution of Spirillum lipoferum Beijerinck. Canadian Journal Microbiology, 22(10), 1464-1473.

DOF (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. D.F., México. http://www.profepa.gob.mx/innovaportal/file/3335/1/nom-021-semarnat-2000.pdf. Fecha de consulta 14 de agosto del 2014.

DOF (2006). Norma Mexicana NMX–AA–134–SCFI–2006, Suelos. Hidrocarburos Fracción Pesada por Extracción y Gravimetría. Método De Prueba. Diario Oficial de la Federación. D.F., México. http://legismex.mty.itesm.mx/normas/aa/nmx-aa-06/proy-nmx-aa-134-scfi-2006.pdf. Fecha de consulta 14 de agosto del 2014.

DOF (2013). Norma Oficial Mexicana NOM-138-SEMARNAT/SAI-2012, Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo y la remediación. Diario Oficial de la Federación. D.F., México. http://www.dof.gob.mx/nota_detalle.php?codigo=5313544&fecha=10/09/2013. Fecha de consulta 14 de agosto del 2014.

Fernández, C., Silva, M., Pereira, J. C., Mallia, A., Llobregat, M. J., & Atomare, V. (2006). Biodegradabilidad de las fracciones de resinas y asfáltenos por pseudomonas en suelo impactado con petróleo crudo mediano. Ingeniería Universidad de Carabobo, 13(4), 7-13.

García-López, E., Zavala-Cruz, J., & Palma-López, D. J. (2006). Caracterización de las comunidades vegetales en un área afectada por derrames de hidrocarburos. Terra Latinoamericana, 24(1), 17-26.

Hernández-Castellanos, B., Zavala-Cruz, J., Martínez-Hernández, S., Dendooven, L., Contreras-Ramos, S. M., Noa-Carrazana, J. C., Fragoso, C., & Ortíz-Ceballos, A. I. (2013). Earthworm Population in an Aged Hydrocarbon Contaminated Soil. Research Journal of Environmental Sciences, 7(1), 27-37.

Hernández-Rivera, M. A., Ojeda-Morales, M. E., Martínez-Vázquez, J. G., Villegas-Cornelio, V. M., & Córdova-Bautista, Y. (2011). Optimal parameters fort In Vitro development of the hydrocarbonoclastic microorganism Proteus sp. Journal of Soil Science and Plant Nutrition, 11(1), 29-43.

John, R. C., Itah, A. Y., Essien, J. P., & Ikpe, D. I. (2011). Fate of nitrogen-fixing bacteria in crude oil contaminated wetland Ultisol. Bulletin of Environmental Contamination and Toxicology, 87(3), 343-353.

Khan, S., Afzal, M., Iqbal, S., & Khan, Q. M. (2013), Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90(4), 1317-1332.

Liu, J., Duan, C., Zhang, X., Zhu, Y., & Xiaoyan, L. (2011). Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. Journal of Hazardous Materials, 188(20), 85-91.

Liu, R., Jadeja, R. N., Zhou, Q., & Liu, Z. (2012). Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environmental Engineering Science, 29(6), 494-501.

Lum, A. F., Ngwa, E. S., Chikoye, D., & Suh, C. E. (2014). Phytoremediation potential of weeds in heavy metal contaminated soils of bassa industrial zone of Doulala. International Journal of Phytoremediation, 16(3), 302-319.

Madigan, M. T., Martinko, J. M., Dunlap, P. V., & Clark, P. D. (2009). Brock, Biología de los Microorganismos. 12a ed. España: Pearson Educación.

Maletic, S. P., Dalmacija, B. D., Roncevic, S. D., Agbaba, J. R., & Garcina, S. D. U. (2011). Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil. Journal of Environmental Science and Health, 46(10), 1042-1049.

Mganga, N. D. (2014). The potential of bioaccumulation and translocation of heavy metals in plant species growing around the tailing dam in Tanzania. International Journal of Science and Technology, 3(10), 690-697.

OECD (2003). Guideline for the testing of chemicals proposal for updating guideline 208; terrestrial plant test: seedling emergence and seedling growth test. Organization for Economic Co-operation and Development. http://www.oecd-library.org/docserver/download/9720801e.pdf?expires=1427427662&id=id&accname=guest&checksum=7A27257197E73417A573AD35039252B4. Fecha de consulta 03 de febrero del 2015.

OMI (2005). Manual sobre la contaminación ocasionada por los hidrocarburos: parte IV, lucha contra los derrames de hidrocarburos. 2a ed. Reino Unido: Organización Marítima Internacional.

Paz-Alberto, A. M., & Sigua, G. C. (2013). Phytoremediation: a Green technology to remove environmental pollutants. American Journal of Climate Change, 2(1), 71-86.

PEMEX (2016). Indicadores petroleros 2014-2016. Petroleos Mexicanos. http://www.pemex.com/ri/Publicaciones/Paginas/IndicadoresPetroleros.aspx.

Penton, C. R., Johnson, T. A., Quensen, J. F., Iwai, S., Cole, J. R., & Tiedje, J. M. (2013). Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter. Frontiers in Microbiology, doi:10.3389/fmicb.2013.00279.

Peña, W., Trasar-Cepeda, C., Gil-Sotres, F., & Leirós, M. C. (2007). Modification of the degradative capacity of a soil artificially contaminated with diesel. Chemosphere, 67(5), 1057-1063.

Pérez-Vargas, J., Anaya-Reza, O., Chang-Solís, C. K., Membrillo-Venegas, I. L., & Calva-Calva, G. (2010). Producción de biosurfactantes por bacterias de vida libre fijadoras de nitrógeno crecidas en hidrocarburos. Revista Centro Nacional de Investigaciones Científicas Ciencias Químicas, 41(1), 1-9.

PROFEPA (2014). Las emergencias ambientales en México: consecuencias e impactos. http://www.cenapred.gob.mx:8080/SeminarioInternacional2014/documentos/mesa3_emergencias.pdf.

Rainho, C. R., Corrêa, S. M., Mazzei, J. L., Aiub, C. A. F., & Felzenszwalb, I. (2013). Genotoxicity of polycyclic aromatic hydrocarbons and nitro-derived in respirable airborne particulate matter collected from urban áreas of Rios de Janeiro (Brazil). Biomed Research International, doi:10.1155/2013/765352.

Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., Thielemans, D., & De Ley, J. (1987). Azospirillum halopraeferans sp. nov., a nitrogen fixing organism associated with roots of Kallar (Leptochloa fusca (L) Kunth). International Journal Systematic Bacteriology, 37(1), 43-46.

Rennie, R. J. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal Microbiology, 27(1), 8-14.

Rivera-Cruz, M. C., & Trujillo-Narcia, A. (2004). Estudio de toxicidad vegetal en suelos contaminados con petróleos nuevo e intemperizado. Interciencia, 29(7), 369-376.

Shao-Hong, Y., Xue-Hong, Z., Jie, L., Yi-Nian, Z., & Chen, G. (2013). Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater. Environmental Technology, 35(2), 187-194.

Sun, F. L., Wang, Y. S., Sun, C. C., Peng, Y. L., & Deng, C. (2012). Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment. Ecotoxicology, 21(6), 1651-1660.

Trujillo-Narcía, A., Rivera-Cruz, M. C., Lagunes-Espinoza, L. C., Palma-López, D. J., Sánchez-Soto, S., & Ramírez-Valverde, G. (2014) Biological parameters of the restoration of soil polluted by crude oil. Ecosistemas y Recursos Agropecuarios, 1(2), 107-122.

Uren, C. N. (2001). Types, Amounts, and Possible Functions of Compounds Released into the Rhizosphere by Soil-Grown Plants. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface (pp. 42-120). New York, American United States: CRC Press.

Vaziri, A., Panahpour, E., & Mirzaee-Beni, M. H. (2013). Phytoremediation, a method for treatment of petroleum hydrocarbon contaminated soils. International Journal of Farming and Allied Sciences, 2(21), 909-913.

Wang, J., Zhan, X., Zhou, L., & Lin, Y. (2010). Biological Indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture contaminated soil. Chemosphere, 80(8), 837-844.

Zambrano, K., & Araujo, I. (2015) Tratamiento Biológico de Sedimentos Contaminados con Hidrocarburos. Madrid: Editorial Académica Española.

Zamora, A., Ramos, J., & Arias, M. (2012). Efecto de la contaminación por hidrocarburos sobre algunas propiedades químicas y microbiológicas de un suelo de sabana. Bioagro, 24(1), 5-12.

Zand, A. D., Bidhendi, G. N., & Mehrdadi, N. (2010). Phytoremediation of total petroleum hydrocarbons (TPHs) using plant species in Iran. Turkish Journal of Agriculture and Forestry, 34(5), 429-438.

Zavala-Cruz, J., Trujillo-Capistrán, F., Ortiz-Ceballos, G. C., & Ortiz-Ceballos, A. I. (2013) Tropical endogeic earthworm population in a pollution gradient with weathered crude oil. Research Journal of Enviromental Sciences, 7(1), 15-26.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.