Abstract
Mining is one of the main economic activities in many tropical regions and is the cause of devastation of large areas of natural tropical forests. The knowledge of the regenerative potential of mining disturbed areas provides valuable information for their ecological restoration. The aim of this study was to evaluate the effect of age of abandonment of mines and their distance from the adjacent forest, on the formation of soil seed bank in abandoned mines in the San Juan, Chocó, Colombia. To do this, we determined the abundance and species composition of the soil seed bank, and the dynamics of seed rain in mines of different cessation period of mining activity (6 and 15 years), and at different distances from the adjacent forest matrix (50 and 100 m). Seed rain was composed by five species of plants with anemocorous dispersion, and was more abundant in the mine of 6 years than in the mine of 15 years. There were no significant differences in the number of seeds collected at 50 m and 100 m from the adjacent forest. The soil seed bank was represented by eight species: two with anemocorous dispersion (common among the seed rain species) and the rest with zoochorous dispersion. The abundance of seeds in the soil did not vary with the age of the mine, but was higher at close distances to the forest edge than far away. During the early revegetation, the formation of the soil seed bank in the mines seems to be related to their proximity to other disturbed areas, rather than their proximity to the adjacent forest or the cessation activity period of mines. Therefore, the establishment of artificial perches or the maintenance of isolated trees in the abandoned mines could favour the arrival of bird-dispersed seeds at mines. However, since the soil seed bank can be significantly affected by the high rainfall in the study area, more studies are needed to evaluate management actions to encourage soil seed bank formation in mines of high-rainfall environments in the Chocó region.References
Aide, T. M., & Cavelier, J. (1994). Barriers to lowland forest tropical restoration in the Sierra Nevada de Santa Marta, Colombia. Restoration Ecolology, 2, 219-229.
Alday, J. G., Marrs, R. H., & Martínez-Ruiz, C. (2010). The importance of topography and climate on short-term vegetation of coal wastes in Spain. Ecological Engineering, 36, 579-585.
Alday, J. G., Pallavicini, Y., Marrs, R. H., & Martínez-Ruiz, C. (2011). Functional groups and dispersal strategies as guides for predicting vegetation dynamics on reclaimed mines. Plant Ecology, 112, 1759-1775.
Álvarez-Aquino, C., Williams-Linera, G., & Newton, A. C. (2005). Disturbance effects on the seed bank of Mexican cloud forest fragments. Biotropica, 37, 337-342.
Álvarez-Buylla, E. M., & Martínez-Ramos, M. (1990). Seed bank versus seed rain in the regeneration of a tropical pioneer tree. Oecologia, 84, 314-325
Andrade-C, G. (2011). Estado del conocimiento de la biodiversidad en Colombia y sus amenazas. Consideraciones para fortalecer la interacción ciencia-política. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35, 491-507.
Ayala, J. H., Mosquera, J., & Murillo, W. I. (2008). Evaluación de la adaptabilidad de la acacia (Acacia mangium Wild), y bija (Bixa orellana) en áreas degradadas por la actividad minera aluvial en el Chocó biogeográfico, Condoto, Chocó, Colombia. Bioetnia, 5, 115-123.
Baker, H. G. (1989). Some aspects of the natural history of the seed banks. In M. A. Leck, V. Parker, & R. L. Simpson (Eds.), Ecology of soil seed banks (pp. 9-21). San Diego California: Academic Press INC.
Bradshaw, A. D. (1997). Restoration of mined lands using natural processes. Ecological Engineering, 8, 255-269.
Baskin, C. C., & Baskin, J. M. (2014). Seeds: ecology, biogeography and evolution of dormancy and germination (2st ed). San Diego, CA: Academic Press.
Bradshaw, A. D. (2000). The use of natural processes in reclamation - advantages and difficulties. Landscape and Urban Planning, 51, 89-100.
Bradshaw, A. D., & Chadwick, M. J. (1980). The Restoration of Land (1st ed.). Oxford: Blackwell Scientific Publications.
Cardona, C. A., & Vargas, O. R. (2004). Plántulas procedentes del banco de semillas germinable de un bosque subandino. Pérez-Arbelaezia, 15, 113-149.
Cubiña, A., & Aide, T. M. (2001). The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica, 33, 260-267.
Dalling, J. W. (2002). Ecología de semillas. En M. R. Guariguata & G. H. Kattan (Eds.), Ecología y conservación de bosques neotropicales (pp. 345-375). Cartago, Costa Rica: Ediciones LUR.
Da Silva, J. M. C., Uhl, C., & Murray, G. (1996). Plant succession, landscape management, and the ecology of frugivorous birds in abandoned Amazonian pastures. Conservation Biology, 10, 491-503.
Estrada-Villegas, S., Pérez-Torres, J., & Stevenson, P. (2007). Dispersión de semillas por murciélagos en un borde de bosque montano. Ecotropicos, 20, 1-14.
Garwood, N. C. (1989). Tropical soil seed banks: a review. In M. A. Leek, V. T. Parker, & R. L. Simpson (Eds.), Ecology of soil seed banks (pp. 149-209). San Diego, California: Academic Press INC.
Guevara, S., Purata, S. E., & Van der Maarel, E. (1986). The role of remnant forest trees in tropical secondary succession. Vegetatio, 66, 77-84.
Guevara, S., Meave, J., Moreno-Casasola, P., & Laborde, J. (1992). Floristic composition and structure of vegetation under isolated trees in Neotropical pastures. Journal of Vegetation Science, 3, 655-664.
Guevara, S., & Laborde, J. (1993). Monitoring seed dispersal at isolated standing trees in tropical pastures: consequences for local species availability. Vegetatio, 107, 319-338.
Holl, K. D. (1999). Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil1. Biotropica, 31, 229-242.
Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201-228.
Kalamees, R., Püssa, K., Zobel, K., & Zobel, M. (2012). Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Applied Vegetation Science, 15, 208-218.
Muñoz, A., Basanta, M., Díaz-Vizcaíno, E., Reyes, O., & Casal, M. (2014). Land use changes effect on floristic composition, diversity and surface occupied by Erica ciliaris and Erica tetralix heathlands of NW Spain. Land Degradation & Development, 25, 532-540.
Muñoz, A., Pesqueira, X. M., García-Duro, J., Álvarez, R., Reyes, O., & Casal, M. (2012). Conservation of Erica ciliaris and Erica tetralix communities: the role of land management and physical environment on the composition, species richness and presence of endemic taxa. Wetlands, 32, 693-703.
Nepstad, D., Uhl, C., Serrao, E. A., & de Souza, E. A. (1990). Surmounting barriers to forest regeneration in abandoned, highly degraded pastures: a case study from Paragominas, Pará, Brazil. In A. B. Anderson (Ed.), Alternatives to deforestation: steps towards sustainable use of the Amazon rain forest (pp. 215-229). New York: Columbia University Press.
Parker, V., Simpson, R., & Leck, M. (1989). Pattern and process in the dynamics of seed banks. In M. A. Leck, V. Parker, & R. L Simpson (Eds.), Ecology of soil seed banks (pp. 367-384). San Diego, California: Academic Press INC.
Parrotta, J. A., & Knowles, O. H. (2001). Restoring tropical forests on lands mined for bauxite: Examples from the Brazilian Amazon. Ecological Engineering, 17, 219-239.
Piudo, M. J., & Cavero, R. Y. (2005). Banco de semillas: comparación de metodologías de extracción, de densidad y de profundidad de muestreo. Publicaciones de Biología, Universidad de Navarra, Serie Botánica, 16, 71-85.
Pinehiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2015). NLME: Linear and nonlinear mixed effects models. Recuperado de http://cran.r-project.org/web/packages/nlme/nlme.pdf
Poveda-M, C., Rojas-P, C. A., Rudas-LI, A., & Rangel-Ch, J. O. (2004). El Chocó biogeográfico: ambiente físico. En J. O. Rangel-Ch (Ed.), Colombia diversidad biótica IV, El Chocó biogeográfico/Costa Pacífica (pp. 1-22). Bogotá, Colombia: Universidad Nacional de Colombia-Conservación Internacional.
R Core Team (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Recuperado de http://www.R-project.org/.
Rangel-Ch, J. O. (2004). Colombia diversidad biótica IV. El Chocó Biogeográfico/Costa Pacífica. Bogotá, Colombia: Universidad Nacional de Colombia, Conservación Internacional.
Skoglund, J. (1992). The role of seed banks in vegetation dynamics and restoration of dry tropical ecosystems. Journal of Vegetation Science, 3, 357-360.
Stevenson, P. R., & Vargas, I. N. (2008). Sample size and appropriate design of fruit and seed traps in tropical forests. Journal of Tropical Ecology, 24, 95-105.
Tekle, K., & Bekele, T. (2000). The role of soil seed banks in the rehabilitation of degraded hills lopes in Southern Wello, Ethiopia. Biotropica, 32, 23-32.
Uhl, C., Buschbacher, R., & Serrao, E. A. (1988). Abandoned pastures in eastern Amazonia. I. Patterns of plant succession. Journal of Ecology, 73, 663-681.
Valois-Cuesta, H. (2016). Sucesión primaria y ecología de la revegetación de selvas degradadas por minería en el Chocó, Colombia: bases para su restauración ecológica (Tesis doctoral). Universidad de Valladolid, España.
Vyvey, Q. (1989). Bibliographical review on buried viable seed in the soil. Excerpta Botanica Section, 27, 1-52.
Walker, L. R., Walker, J., & del Moral, R. (2007). Forging a new alliance between succession and restoration. In L. R. Walker, J. Walker, & R. J. Hobbs (Eds.), Linking restoration and ecological succession (pp. 1-18). New York: Springer.
Zhang, Z. Q., Shu, W. S., Lan, C. Y., & Wong, M. H. (2001). Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings. Restoration Ecology, 9, 378-385.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2017 Revista de Biología Tropical