Abstract
Native Theobroma species, such as cacauhy, are losing their habitat due to the intense forest fragmentation in the Amazon region, and preserving their genetic diversity has been the main aim of many conservation programs. The aim of the present study is to assess whether fragmentation and habitat reduction affect the genetic structure and lead to genetic diversity losses in natural Theobroma speciosum populations. The study was conducted in two Mato Grosso State (Brazil) locations, namely: Apiacás and Alta Floresta counties. Juruena National Park (JNP) in Apiacás County holds a natural T. speciosum population that has not underwent anthropic influences. A population composed of individuals from three anthropized urban forest parks (UF) in Alta Floresta County was analyzed. The leaves of 75 T. speciosum individuals distributed in the urban forest fragments and of 100 individuals found in the Juruena National Park were sampled. All nine microsatellite loci showed high polymorphism levels between categories (adults and sub-adults), in both populations. The sub-adult individuals of the population (UF) in the fragmented area showed higher value (0.71), whereas the preserved population (JNP) category presented the same value (0.69). The increasing trend of estimating the fixation index towards the fragmented population was observed. The analysis of molecular variance showed 83 % genetic diversity within categories; 16 %, between populations; and only 1 %, between categories. Although the effects were small, a persistent fragmentation process can increase the inbreeding levels and facilitate the genetic drift action. These effects may lead the T. speciosum populations to inbreeding depression, diversity loss and genetic structure change in the course of several generations.
References
Aldrich, R. P., Hamrick, J. L., Chavarriaga, P., & Kochert, G. (1998). Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Molecular Ecology, 7, 933-944.
Bekessy, S. A., Allnutt T. R., Premoli A. C., & Lara A. (2002). Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity, 88, 243-249.
Botstein, D. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 32, 314-331.
Carvalho, A. C. M., Freitas, M. L. M., Moraes, S. M. B., Moraes, M. L. T., Stranghetti, V., Alzete-Martins, A. L., & Sebbenn, A. M. (2010). Diversidade genética, endogamia e fluxo gênico em pequena população fragmentada de Copaifera langsdorffii. Revista Brasileira de Botânica, 33, 599-606.
Colevatti, R. G., Lima, J. S., Soares, T. N., & Telles, M. P. C. (2010). Spatial Genetic Structure and life history traits in Cerrado tree species: Inferences for conservation. Natureza & Conservação, 8(1), 54-59.
Cruz, C. D. (1997). Programa Genes: aplicativo computacional em genética e estatística. Viçosa: Editora UFV.
Dardengo, J. F. E., Rossi, A. A. B., Silva, B. M., Silva, C. J., & Sebbenn, A. M. (2016). Diversity and spatial genetic structure of a natural population of Theobroma speciosum (Malvaceae) in the Brazilian Amazon. Revista de Biología Tropical, 64(3), 1091-1099.
Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 1315-1321.
Giustina, L. D., Luz, L. N., Vieira, F. S., Rossi, F. S., Soares-Lopes, C. R. A., Pereira, T. N. S., & Rossi, A. A. B. (2014). Population structure and genetic diversity in natural populations of Theobroma speciosum Willd. ex Spreng (Malvaceae). Genetics and Molecular Research, 13(2), 3510-3519.
Hamrick, J. L. (1982). Plant population genetics and evolution. American Journal of Botany, 69(10), 1685-1693.
Hamrick, J. L. (1983). The distribution of genetic variation within and among natural plant populations. In C.M. Schonewald-Cox, S. M. Chambers, B. Macbryde, W. L. Thomas (Eds.), Genetic and Conservation (pp. 335-348). California: Benjamin/Cummings, Menlo Park.
Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Journal of Molecular Ecology, 16(5), 1099-1106.
Lanaud, C., Risterucci, A. M., Pieretti, I., Falque, M., Bouet, A., & Lagoda, P. J. L. (1999). Isolation and characterization of microsatellites in Theobroma cacao L. Molecular Ecology, 8, 2141-2143.
Lemes, M. R., Martiniano, T. M., Reis, V. M., Faria, C. P., & Gribel, R. (2007). Cross-amplification and characterization of microsatellite loci for three species of Theobroma (Sterculiaceae) from the Brazilian Amazon. Genetic Resources and Crop Evolution, 54, 1653-1657.
Lorenzi, H. (1998). Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. São Paulo: Editora Plantarum.
Murawski, D. A, Dayanandan, B., & Bawa, K. S. (1994). Outcrossing rates of two endemic Shorea species from Sri Lankan tropical rain forests. Biotropica, 26(1), 23-29.
Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583-590.
Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13, 1143-1155.
Rivas, L. H., Giustina, L. D., Luz, L. N., Karsburg, I. V., Pereira, T. N. S., & Rossi, A. A. B. (2013). Genetic diversity in natural populations of Theobroma subincanum Mart. in the Brazilian Amazon. Genetics and Molecular Research, 12(4), 4998-5006.
Rosa, R. D., Perin, C. L., & Rosa, R. D. (2003). Colonizador e colonos: na fronteira da terra o limite dos sonhos de um futuro promissor. Revista do Programa de Ciências Agro-Ambientais, 2(1), 71-82.
Rossi, F. S., Rossi, A. A. B., Dardengo, J. F. E., Brauwers, L. R., Silva, M. L., & Sebbenn, A. M. (2014). Diversidade genética em populações naturais de Mauritia flexuosa L. f. (Arecaceae) com uso de marcadores ISSR. Scientia Forestalis, 42(104), 631-639.
Sebbenn, A. M., Seoane, C. E. S., Kageyama, P. Y., & Vencovsky, R. (2000). Effects of the management on the genetic structure of caixeta (Tabebuia cassinoides) populations. Scientia Forestalis, 58, 127-143.
Silva, A. R., & Martins, M. B. (2004). Anew anthophilic species of Drosophila Fallén belonging to the bromeliae group of species (Diptera, Drosophilidae). Revista Brasileira de Zoologia, 21, 435-437.
Silva, B. M., Rossi, A. A. B., Dardengo, J. F. E., Araujo, V. A. A. C., Rossi, F. S., Oliveira, L. O., & Clarindo, W. R. (2016). Diversidade genética estimada com marcadores entre sequências simples repetidas em cultivos comerciais de Cupuaçuzeiro. Ciência Rural, 46(1), 108-113.
Silva, B. M., Rossi, A. A. B., Dardengo, J. F. E., Silva, C. R., Silva, I. V., Silva, M. L., & Silva, C. J. (2015). Genetic structure of natural populations of Theobroma in the Juruena National Park, Mato Grosso State, Brazil. Genetics and Molecular Research, 14(3), 10365-10375.
Souza, M. S., & Venturieri, G. A. (2010). Floral biology of cacauhy (Theobroma speciosum – Malvaceae). Brazilian Archives of Biology and Technology, 53, 861-872.
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Young, A. G., Boyle, T., & Brown, T. (1996). The population genetic consequences of habitat fragmentation for plants. Tree, 11(10), 413-418.
Young, A. G., Merriam, H. G., & Warwick, S. I. (1993). The effects of forest fragmentation on genetic variation in Acer saccharum Marsh. (sugar maple) populations. Heredity, 71, 277-289.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical