Abstract
The pustulose ark A. tuberculosa is an emblematic species of mangrove ecosystem that is currently in a vulnerable condition. The development of its aquaculture, to begin with genetic breeding programs, requires the identification of molecular biomarkers, particularly those associated with salinity stress. With this purpose, specimens of A. tuberculosa were collected from the adjacent mangroves of Puerto Pizarro bay (Tumbes, Perú), from January 2015 to February 2016. Different assays (groups of ten animals in triplicate) were undertaken in separated periods of 16 days: hypo-osmotic stress (extreme: 5, 10 ppt); (Moderate: 15, 25 ppt) and no stress (control group: 33 ppt). The presence of salinity stress biomarkers was assessed at the genetic level throughout PCR detection of 19 genes reported to be key actors in osmoregulation, and at the proteomic level with the sequencing of peptides (tandem mass spectrometry MALDI TOF/TOF), expressed in ark tissues exposed to different salinities. None of the tested genetic markers could be amplified by PCR, suggesting that A. tuberculosa has significant genetic differences compared to other mollusks. Proteomic analysis by mass spectrometry on A. tuberculosa gill tissue, allowed to identify 26 peptides expressed in presential and differential forms at different salinities, highlighting possible markers such as HSP70 and trans-membrane chloride channel transportation protein, to be related with salinity adaptation. These amino acid sequences will allow the design of target specific primers for A. tuberculosa, to implement future research in ecophysiology of this important fishery resource.
References
Artigaud, S., Lacroix, C., Richard, J., Flye-Sainte-Marie, J., Bargelloni, L., & Pichereau, V. (2015). Proteomic responses to hypoxia at different temperatures in the great scallop (Pecten maximus). PeerJ, 3, e871. doi: 10.7717/peerj.871
Barman, H. K., Patra, S. K., Das, V., Mohapatra, S. D., Jayasankar, P., Mohapatra, Ch., Mohanta, R., Panda, R. P., & Rath. S. N. (2012). Identification and Characterization of Differentially Expressed Transcripts in the Gills of Freshwater Prawn (Macrobrachium rosenbergii) under Salt Stress. The Scientific World Journal, doi:10.1100/2012/ 149361
Cruz, R., Fonseca, R. & Chavarría-Solera, F. (2012). Comparación de la composición química proximal de la carne de A. tuberculosa y A. similis (Bivalvia: Arcidae) de Chomes, Puntarenas, Costa Rica. Revista de Ciencias Marinas y Costeras, 4, 95-103. Recuperado de http://www.revistas.una.ac.cr/index.php/revmar/article/view/4801
Cross, I., Merlo, M., Rodríguez, M. E., Portela-Bens, S., & Rebordinos, L. (2014). Adaptation to abiotic stress in the oyster Crassostrea angulata relays on genetic polymorphisms. Fish Shellfish Immunology, 41(2), 618-24. doi: 10.1016/j.fsi.2014.10.011
Damiens, G., Mouneyrac, C., Quiniou, F., His, E., Gnassia-Barelli, M., & Roméo, M. (2006). Metal bioaccumulation and metallothionein concentrations in larvae of Crassostrea gigas. Environmental Pollution, 140(3), 492-9, doi: 10.1016/j.envpol.2005.08.006
Diringer, B., Vasquez, R., Moreno, V., Pretell, K., & Sahuquet, M. (2012). Peru Project Studies Blood cockles for stock enhancement, Aquaculture. Global Aquaculture Advocate, Ju-Agt, 48-50. Recuperado de http://pdf.gaalliance.org/pdf/GAA-Diringer-July12.pdf.
Eierman, L. E., & Hare, P. M. (2014). Transcriptomic analysis of candidate osmoregulatory genes in the eastern oyster Crassostrea virginica. Bio Med Central Genomics, 15, 503, doi: 10.1186/1471-2164-15-503
Espinosa, S. G., Delgado, M. H., Orobio, B. R., Mejía-Ladino, L. & Gil-Agudelo, D. (2010). Estado de la población y valoración de algunas estrategias de conservación del recurso piangua Anadara tuberculosa (Sowerby) en sectores de Bazán y Nerete, costa pacífica nariñense de Colombia. Boletín Investigación Marina Costera, 39(1), 161-176. Recuperado de http://www.scielo.org.co/pdf/mar/v39n1/v39n1a09.pdf
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – applications to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113-118. Recuperado de https://nature.berkeley.edu/brunslab/papers/ gardes1993.pdf
Gosling, E. (2015). Marine Bivalve Molluscs (2nd ed). Oxford, U.K.: Editorial offices.
Gracey, Y., Chaney, M. L., Boomhower, J. P., Tyburczy, W. R., Connor, K., & Somero, G. N. (2008). Rhythms of Gene Expression in a Fluctuating Intertidal Environment. Current Biology, 18, 1501-1507, doi:10.1016/j.cub.2008.08.049
Liu, H., He, J., Chi, C., & Lv, Z. (2015). Identification and analysis of HSP70 from Sepiella maindroni under stress of Vibrio harveyi and Cd2+. Epub 1, 572(1), 146-52. Recuperado de http://dx.doi.org.sci-hub.bz/10.1016/j.gene.2015.07.056
Lucero, C., Cantera, J., & Neira, R. (2012). Pesquería y crecimiento de la piangua (Arcoida: Arcidae) Anadara tuberculosa en la Bahía de Málaga del Pacífico colombiano, 2005-2007. Revista Biología Tropical, 60(1), 203-217.
Mendoza, O. & Peralta, T. (2004). Primeros ensayos sobre reproducción inducida y obtención de semillas de Anadara tuberculosa (Sowerby, 1833) en laboratorio. Revista Manglar, 2(1), 87-94.
Meng, J., Zhu, Q., Zhang, L., Li, Ch., Li, L., She, Z., Huang, B., & Zhang, G. (2013). Genome and Transcriptome Analyses Provide Insight into the Euryhaline Adaptation Mechanism of Crassostrea gigas. PLoS One, 8(3), e58563, doi: 10.1371/journal.pone.0058563
Nieves, M., Román, J. C., Piña, P., Medina, A., Leal, S., Miranda, A., & Muñoz, G. (2009). Balance energético de Anadara tuberculosa (SOWERBY, 1833) a diferentes temperaturas. Revista de Investigaciones Marinas, 30, 135-144. Recuperado de http://www.rim.uh.cu/index.php/IM/article/viewFile/131/130
Ordinola, E., Montero, P., Alemán, S., & Llanos, J. (2007). Prospección del recurso concha negra (Anadara tuberculosa) en los manglares de Tumbes. Tumbes: IMARPE.
Patterson, K., Boettcher, A., & Carmichael, R. (2014). Biomarkers of dissolved oxygen stress in oysters: a tool for restoration and management efforts. PLoS One, 12, 9, e104440. doi: 10.1371/journal.pone.0104440
Rocher, B., Bultelle, F., Chan, Ph., Le Foll, F., Letendre, J., Monsinjon, T., Olivier, S., …, & Knigge, T. (2015). 2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes, 3(1), 3-41, doi: 10.3390/proteomes3010003
Shevchenko, A., Henrik, T., Jan, H., Jesper, V., & Matthias, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 6(1), 2856-2860. doi: 10.1038/nprot.2006.468
Shiel, B., Hall, N., Cooke, I., Robinson, N., & Strugnell, J. (2015). De novo characterisation of the greenlip abalone transcriptome (Haliotis laevigata) with a focus on the heat shock protein 70 (HSP70) family. Marine Biotecnology (NY), 17(1), 23-32. doi: 10.1007/s10126-014-9591-y
Tomanek, L., Zuzow, M. J., Hitt, L., Serafini, L., & Valenzuela, J. J. (2012). Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change. The Journal of Experimental Biology, 215, 3905-3916. doi:10.1242/jeb.076448
Yang, C., Wang, L., Wang, J., Jiang, Q., Qiu, L., Zhang, H., & Song, L. (2014). The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops (Argopecten irradians irradians and A. i. concentricus). PLoS One, 9(7), e102332. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100766/pdf/pone.0102332.pdf
Zhao, X., Yu, H., Kong, L., & Li, Q. (2012). Transcriptomic responses to salinity stress in the pacific oyster Crassostrea gigas. PLoS One, 7(9), e46244, doi: 10.1371/journal.pone.0046244
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2017 Revista de Biología Tropical