Abstract
Echinoids play an important role in marine ecosystems structuring. Often, their population density experience markedly fluctuations that promote a state shift in the ecosystems they inhabit. Population increments of some sea urchins may cause catastrophic changes in temperate areas of the planet by decimating the erect macroalgae cover. These population increments results in unproductive and very stable assemblages, known as “blanquizales” (ericeras/moradales), or sea urchin barren ground. Macroalgae are the main ecosystem engineers in temperate areas and generate a suitable nursery and feeding habitat for fishes. These algae stands are also important zones for biofiltration of coastal waters and CO2 uptake. The main consequence of vegetated biomass lost is a trophic disequilibrium that generates important economic losses for artisanal fisheries and tourism. In tropical areas, sea urchin’s outbreaks can cause bioerosion in coral reefs. However, the most important event to highlight was the mass mortality occurred in the Caribbean during the 80’s. This event favored the development of algae communities that suffocated the coral reef ecosystem. Therefore, both in temperate and tropical areas of the planet, these boom-bust echinoids generate undesired ecosystems states. Very recently, various global scale collaborative papers have highlighted a clear anthropogenic cue. Human activity though overfishing or favoring global warming, weakens marine ecosystem resilience and promote these catastrophic ecosystem shifts. To mitigate the effects of these population changes different management strategies have been used. For instance, in temperate areas, sea urchin reduction actions (manually or by using quick lime), sea urchin harvesting or the implementation of marine reserves have been used, with contrasting results. In Caribbean coral reefs affected by urchin mass mortality, some sea urchin juvenile’s reintroduction plans have been used but with very low effectiveness. The more feasible ecosystem scale strategy due to its preventive nature, seems to be the implementation of protected areas. However, the impact of global warming will exceed our capacity to manage marine ecosystems locally and will required more efficient global actions to prevent undesired sea urchin fluctuations. Rev. Biol. Trop. 65(Suppl. 1): S23-S34. Epub 2017 November 01.
References
Alvarado, J.J., Cortés, J., Guzmán, H., & Reyes-Bonilla, H. (2016). Bioerosion by the sea urchin Diadema mexicanum along Eastern Tropical Pacific coral reefs. Marine Ecology, 37, 1088-1102. doi:10.1111/maec.12372
Alves, F., Chícharo, L.M., Serrao, E., &Abreu, A.D. (2001). Algal cover and sea urchin spatial distribution at Madeira Island (NE Atlantic). Scientia Marina, 65, 383-392. doi: http://dx.doi.org/10.3989/scimar.2001.65n4383
Andrew, N.L. & Underwood, A.J. (1989). Patterns of abundance of the sea urchin Centrostephanus rodgersii (Agassiz) on the central coast of New South Wales, Australia. Journal of Experimental Marine Biology and Ecology, 131, 61-80.
Bak, R.P.M. (1994). Sea urchin bioerosion on coral reefs: place in the carbonate budget and relevant variables. Coral Reefs, 13, 99-104.
Carpenter, R.C. (1988). Mass-mortality of a Caribbean Sea urchin: immediate effects on community metabolism and other herbivores. Proceedings of the National Academy of Science, 85, 511-14.
Carpenter, R.C. (1990). Mass mortality of Diadema antillarum I. Long-term effects on sea urchin population dynamics and coral reef algal communities. Marine Biology 104, 67-77.
Carracedo, J.C., Pérez, F.J., & Meco, J. (2005). La gea: análisis de una isla en estado post-erosivo de desarrollo. En: Rodríguez, O. (Ed.), Patrimonio natural de la isla de Fuerteventura (pp. 27–44). Cabildo de Fuerteventura-Consejería de Medio Ambiente y Ordenación Territorial del Gobierno de Canarias-Centro de la Cultura Popular Canaria. Santa Cruz de Tenerife, Islas Canarias, España.
Carreiro-Silva, M. & McClanahan, T.R. (2001). Echinoid bioerosion and herbivory on Kenyan corl reefs: role of protection from fishing. Journal of Experimental Marine Biology and Ecology, 262, 133-153.
Clemente, S. (2007). Evolución de las poblaciones del erizo Diadema aff. antillarum en Canarias y valoración de la depredación como factor de control. Tesis doctoral (421 pp.), Universidad de La Laguna, Tenerife, Canary Islands, Spain.
Clemente, S., Hernández, J.C., & Brito, A. (2009). Evidence of the top–down role of predators in structuring sublittoral rocky-reef communities in a Marine Protected Area and nearby areas of the Canary Islands. ICES Journal of Marine Science, 66, 64-71. doi: https://doi.org/10.1093/icesjms/fsn176
Clemente, S., Hernández, J.C., Rodríguez, A., & Brito, A. (2010). Identifying keystone predators and the importance of preserving functional diversity in sublittoral rocky bottoms. Marine Ecology Progress Series, 413, 55-67. doi: https://doi.org/10.3354/meps08700
Clemente, S., Lorenzo-Morales, J., Mendoza, J.C., López, C., Sangil, C., Alves, F., Kaufmann, M. & Hernández, J.C. (2014). Sea urchin Diadema africanum mass mortality in the subtropical Eastern Atlantic: role of waterborne bacteria in a warming ocean. Marine Ecology Progress Series, 506, 1-14. doi: https://doi.org/10.3354/meps10829
Dayton, P.K. (1985). Ecology of kelp communities. Annual Review of Ecology and Systematics, 16, 215-245.
Dayton, P.K., Currie, V., Gerrodette, T., Keller, B.D., Rosenthal, R., & Tresca, D.V. (1984). Patch dynamics and stability of some California kelp communities. Ecological Monograph, 54, 253-289.
Dumont, C., Himmelman, J.H., & Russell, M.P. (2004). Size-specific movement of green sea urchins Strongylocentrotus droebachiensis on urchin barrens in Eastern Canada. Marine Ecology Progress Series 276, 93-101. doi: 10.3354/meps276093
Dumont, C., Lau D.C.C., Astudillo, J.C., Fong, K.F., Chak, S.T.C., & Qiub, J.W. (2013). Coral bioerosion by the sea urchin Diadema setosum in Hong Kong: Susceptibility of different coral species. Journal of Experimental Marine Biology and Ecology, 441, 71-79. doi: http://dx.doi.org/10.1016/j.jembe.2013.01.018
Ebeling, A.W., Laur, D.R., & Rowley, R.J. (1985). Severe storm disturbances and reversal of community structure in a southern California kelp forest. Marine Biology, 84, 287-294.
Estes, J.A., Tinker, M.T., Williams, T.M., & Doak, D.F. (1998). Killer Whale predation on sea otters linking oceanic and nearshore ecosystems. Science, 282, 473-476.
Falcón, J.M., Hernández, J.C., Brito, A., García, N., González, G.J., Cruz, A., Herrera, G., Gil-Rodríguez, M.C., & Clemente, S. (2004). Effects of the sea urchin Diadema antillarum reduction on algae, sessile invertebrates and fish populations in the Canary Islands. Proceedings of the 5th International Symposium on Fauna and Flora of Atlantic Islands FFAIS- 5 Dublin, 24 - 27 August 2004
Fernández-Palacios, J.Mª., de Nascimento, L., Hernández, J.C., Clemente, S., González, A., & Díaz-González, J.P. (Eds.) (2013) Climate Change Perspectives from the Atlantic: Past, Present and Future. San Cristobal de La Laguna, Tenerife. Servicio de Publicaciones de la Universidad de La Laguna. 729pp.
Filbee-Dexter, K. & Scheibling, R.E. (2014). Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Marine Ecology Progress Series, 495, 1-25. doi: 10.3354/meps10573
Fujita, D. (1998). Strongylocentrotid sea urchin-dominated barren grounds on the Sea of Japan coast of northern Japan. En: Mooi, R. & Telford, M. (eds.) Echinoderms. (pp 659-664). Balkema, Rotterdam. Holanda.
Glynn, P.W. (1988). El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea, 7, 129-160.
Guidetti, P., Fraschetti, S., Terlizzi, A., & Boero, F. (2003). Distribution patterns of sea urchins and barrens in shallow Mediterranean rocky reefs impacted by the illegal fishery of the rock-boring mollusc Lithophaga lithophaga. Marine Biology, 143, 1135-1142. doi: 10.1007/s00227-003-1163-z
Guzmán, H.M. & Cortes, J. 1989. Coral reef community structure at Caño Island, Pacific Costa Rica. Marine Ecology 10, 23-41.
Hernández, J.C., Clemente, S., Girard, D., Pérez-Ruzafa, A., & Brito, A. (2010). Effect of temperature on settlement and post -settlement survival in a barrens-forming sea urchin. Marine Ecology Progress Series, 413, 69-80. doi: 10.3354/meps08684
Hernández, J.C., Clemente, S., Sangil, C., & Brito, A. (2008). The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): a spatio-temporal approach. Marine Environmental Research, 66, 259-270. doi:10.1016/j.marenvres.2008.03.002
Hernández, J.C., Sangil, C., & Clemente, S. (2013). Sea urchins, natural events and benthic ecosystems functioning in the Canary Islands. En: Fernández-Palacios, J.Mª. de Nascimento, L., Hernández, J.C., Clemente, S., González, A. & Díaz-González, J.P. (Eds.), Climate Change Perspectives from the Atlantic: Past, Present and Future (pp. 487-512). Servicio de Publicaciones de la Universidad de La Laguna, Tenerife, islas Canarias, España.
Hughes, T.P. (1994). Catastrophes, Phase Shifts, and Large-Scale Degradation of a Caribbean Coral Reef. Science, 265,1547-1551.
Jamieson, G.S. & Campbell, A. (1995). Red sea urchins and kelp in northern British Columbia. En: Skjoldal, H.R., Hopkins, C., Erikstad, K.E., Leinaas, H.P. (eds) Ecology of fjords and coastal waters (pp. 537-547). Elsevier Science, Amsterdam, Holanda.
Johnston, C.S. (1969). Studies on the ecology and primary production of Canary Islands marine algae. Proceedings of the International Seaweed Symposium, 6, 213-222.
Lawrence, J.M. (1975). On the relationship between marine plants and sea urchin. Oceanography and marine biology: an annual review, 13, 213-286.
Lessios, H.A. (1988). Mass mortality of Diadema antillarum in the Caribbean: What Have We Learned? Annual Review of Ecology and Systematics, 19, 371-393.
Lessios, H.A. (2016). The great Diadema antillarum die-off: 30 years later. Annual Review Marine Science, 8, 267-83. doi: 10.1146/annurev-marine-122414-033857
Lessios, H.A., Kessing, B.D., & Pearse, J.S. (2001). Population structure and speciation in tropical seas, global phylogeography of the sea urchin Diadema. Evolution, 55, 955-975. doi: 10.1111/j.0014-3820.2001.tb00613.x
Ling, S.D., Johnson, C.R., Frusher, S.D., & Ridgeway, K.R. (2009). Overfishing reduces resilience of kelp beds to climate driven catastrophic phase shift. Proceedings of the National Academy of Science USA, 106, 22341-22345.
Ling, S.D., Scheibling, R.E., Rassweiler, A., Johnson, C.R., Shears, N., Connell, S.D., Salomon, A.K., Norderhaug, K.M., Pérez-Matus, A., Hernández, J.C., Clemente, S. Blamey, L.K., Hereu, B., Ballesteros, E., Sala, E., Garrabou, J., Cebrian, E., Zabala, M., Fujita, D., & Johnson, L.E. (2014). Global regime shifts dynamics of catastrophic sea urchin overgrazing. Philosophical Transactions of the Royal Society B, 370, 20130269. doi: 10.1098/rstb.2013.0269
López-Yllescas, M. (2012). Relación entre la densidad poblacional de Diadema mexicanum A. Agassiz, 1863 y la cobertura de algas en dos arrecifes coralinos del Pacífico Sur Mexicano, después de un evento de mortandad masiva. Tesis de licenciatura. Universidad del Mar, Oaxaca, Méjico. 50p.
Mortensen, T. (1943). A Monograph of the Echinoidea. III. 3. Camarodonta. II. Echinidæ, Strongylocentrotidæ, Parasaleniidæ, Echinometridæ. CA Rietzel, Copenhagen.
Norderhaug, K.M. & Christie, H.C. (2009). Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Marine Biology Research, 5, 515-528. doi: http://dx.doi.org/10.1080/17451000902932985
Rodríguez, A., Hernández, J.C., Clemente, S., & Coppard, S.E. (2013) A new species of Diadema (Echinodermata:Echinoidea:Diadematidae) from the eastern Atlantic Ocean and a neotype designation of Diadema antillarum (Philippi, 1845). Zootaxa, 3636(1), 144-170. doi: 10.11646/zootaxa.3636.1.6
Sangil, C., Clemente, S., & Hernández J.C. (2012). No take areas as an effective tool to restore urchin barrens on subtropical rocky reefs. Estuarine, Coastal and Shelf Science, 112, 207-215. doi: http://dx.doi.org/10.1016/j.ecss.2012.07.025
Sangil, C., Sansón, M., Clemente, S., Afonso-Carrillo, J., & Hernández, J.C. (2014). Contrasting the species abundance, species density and diversity of seaweed assemblages in alternative states: urchin density as a driver of biotic homogenization. Journal of Sea Research, 85, 92-103. doi: http://dx.doi.org/10.1016/j.seares.2013.10.009
Scheibling, R.E., Hennigar, A.W., & Balch, T. (1999). Destructive grazing, epiphytism, and disease: the dynamics of sea urchin−kelp interactions in Nova Scotia. Canadian Journal of Fisheries and Aquatic Science, 56, 2300-2314.
Shears, N.T. & Babcock, R.C. (2003). Continuing trophic cascade effects after 25 years of no-take marine reserve protection. Marine Ecology Progress Series, 246, 1-16.
Steneck, R.S., Vavrinec, J., & Leland, A.V. (2004). Accelerating trophic-level dysfunction in kelp forests ecosystems of the Western North Atlantic. Ecosystems, 7, 323-332. doi: 10.1007/s10021-004-0240-6
ULL Media (2014). Workshop “Responses of key sea urchin populations to climate change processes: from larvae to ecosystems” [internet]. Disponible en https://www.youtube.com/playlist?list=PLAqmRmkVzl1-OT6tlRqjXD0LgsEGy5pQP
Uthicke, S., Schaffelke, B., & Byrne, M. (2009). A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecological Monographs, 79, 3-24. doi:10.1890/07-2136.1
Vega, J.M.A., Vásquez, J.A., & Buschmann, A.H. (2005). Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales: Phaeophyta) in an upwelling ecosystem of northern Chile: interannual variability and El Niño 1997-98. Revista Chilena de Historia Natural, 78, 33-50. doi: http://dx.doi.org/10.4067/S0716-078X2005000100004
Wangensteen, O.S., Turon, X., García-Cisneros, A., Recasens, M., Romero, J., & Palacín, C. (2011). A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Marine Ecology Progress Series, 441, 117-128. doi:10.3354/meps09359
William K.S. (1999). Search for missing otters turns up a few surprises [internet]. New York Times. Disponible en http://www.nytimes.com/1999/01/05/science/search-for-missing-otters-turns-up-a-few-surprises.html
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2017 Revista de Biología Tropical