Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Effect of temperature and salinity on the seagrass Halophila baillonii (Hydrocharitaceae) under aquarium conditions
PDF
HTML
EPUB

Keywords

Eastern Tropical Pacific; Golfo Dulce; climate change; environmental factors; seagrass condition.
Pacífico Tropical Oriental; Golfo Dulce; cambio climático; factores ambientales; condición de pastos marinos.

How to Cite

Olvido van Barneveld Pérez, C., & Samper-Villarreal, J. (2025). Effect of temperature and salinity on the seagrass Halophila baillonii (Hydrocharitaceae) under aquarium conditions. Revista De Biología Tropical, 73(S1), e63697. https://doi.org/10.15517/rev.biol.trop.v73iS1.63697

Abstract

Introduction: Halophila baillonii, also known as “clover grass”, is a rare seagrass species found in tropical waters off the American continent. This is a small and ephemeral species classified as Vulnerable in the IUCN Red List.

Objective: To determine how variations in temperature and salinity affect this seagrass.

Methods: H. baillonii was collected in the southern Pacific coast of Costa Rica either by hand or with a corer (8 cm diameter). Two experiments with three treatments each were carried out in aquaria. Each treatment was applied to three aquaria, for a total of nine aquaria per experiment. The temperature treatments consisted of 23 °C (Low), 28 °C (Control), 33 °C (High), with a constant salinity of 25 over 51 days. Salinity treatments were 15 (Low), 25 (Control), 35 (High) with a constant minimum temperature of 28 °C over 31 days. Five plant performance parameters were measured: 1) foliar shoot survival; 2) increase in the number of foliar shoots; 3) horizontal rhizome elongation; 4) rhizome internodal length; and 5) leaf area.

Results: H. baillonii survival rates were higher when collected manually rather than using a corer. All plant performance parameters were higher at 28 °C temperature (control). In contrast, variables of plant performance were similar in all salinity treatments, except that the seagrass presented smaller leaves at higher salinities. Female flowers were found towards the end of the experiments, being the first report of flowering of this species under aquaria conditions.

Conclusion: H. baillonii has a wide salinity tolerance, thus enabling plant survival during dry or rainy seasons. In contrast, H. baillonii appears to be more sensitive to lower and higher temperatures than 28 ºC. This is the first study reporting the response of this threatened species to experimentally induced fluctuations of temperature and salinity.

https://doi.org/10.15517/rev.biol.trop..v73iS1.63697
PDF
HTML
EPUB

References

Adams, J. B., & Bate, G. C. (1994). The ecological implications of tolerance to salinity by Ruppia cirrhosa (Petagna) Grande and Zostera capensis Setchell. Botanica Marina, 37, 449–456. https://doi.org/10.1515/botm.1994.37.5.449

Barros, K., Costa, F., & Rocha-Barreira, C. (2014). A Halophila baillonis Ascherson bed on the semiarid coast of Brazil. Feddes Repertorium, 125, 93–97. https://doi.org/10.1002/fedr.201400033

Barquero Chanto, J. E. (2018). Caracterización y recomendaciones de manejo de una pradera de pastos marinos en playa Colibrí, Golfo Dulce, Costa Rica [Tesis de maestría]. Universidad Nacional de Costa Rica, Costa Rica.

Bessesen, B. L., & Guido, S. R. (2012). Tropical fiord habitat as a year-round resting, breeding, and feeding ground for East Pacific green sea turtles (Chelonia mydas) off Costa Rica. Herpetogical Review, 43(4), 539–541.

Biebl, R., & McRoy, C. P. (1971). Plasmatic resistance and rate of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Marine Biology, 8, 48–56. https://doi.org/10.1007/BF00349344

Bird, K. T., Johnson, J. R., & Jewett-Smith, J. (1998). In vitro culture of the seagrass Halophila decipiens. Aquatic Botany, 60(4), 377–387. https://doi.org/10.1016/S0304-3770(97)00093-4

Bujang, J. S., Huat, L. L., Zakaria, M. H., Arshad, A., & Ogawa, H. (2008). Laboratory culture of the seagrass Halophila ovalis (R. Br.) Hooker f. Marine Research in Indonesia, 33(1), 1–6. https://doi.org/10.14203/mri.v33i1.500

Campbell, S. J., McKenzie, L. J., & Kerville, S. P. (2006). Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. Journal of Experimental Marine Biology and Ecology, 330(2), 455–468. https://doi.org/10.1016/j.jembe.2005.09.017

Carrasco, J. C., & Caviedes, V. (2013). Ecología del sistema fluvio lagunar Chachaguala: énfasis en la diversidad y distribución de las comunidades de peces a escala espacial. Omoa, Honduras. Parque Nacional Cuyamel Omoa [Reporte técnico]. Fundación para la Investigación y la Conservación de los Ecosistemas y la Biodiversidad, Honduras.

Carrasco, J. C., & Caviedes, V. (2015). Taxonomía, ecología y estructura de las comunidades de peces de la Laguna de Chachaguala, Omoa, Honduras: con énfasis en pesquerías [Reporte técnico]. Federación Nacional de Pescadores Artesanales de Honduras (FENAPESCAH) y Cuerpos de Conservación de Omoa (CCO).

Cortés, J. (2001). Requiem for an eastern Pacific seagrass bed. Revista de Biología Tropical, 49(Suppl. 2), 273–278. https://doi.org/10.15517/rbt.v49i2.26334

Doering, P., & Chamberlain, R. (1999). Experimental studies on the salinity tolerance of Turtle Grass, Thalassia testudinum. In S. A. Bortone (Ed.), Seagrasses: Monitoring, Ecology, Physiology and Management (pp 99–106). CRC Press. https://doi.org/10.1201/9781420074475.ch6

Gavin, N. M., & Durako, M. J. (2012). Localization and antioxidant capacity of flavonoids in Halophila johnsonii in response to experimental light and salinity variation. Journal of Expxperimental Marine Biology and Ecology, 416, 32–40. https://doi.org/10.1016/j.jembe.2012.02.006

Griffin, N. E. & Durako, M. J. (2012). The effect of pulsed versus gradual salinity reduction on the physiology and survival of Halophila johnsonii Eiseman. Marine Biology, 159, 1439–1447. https://doi.org/10.1007/s00227-012-1923-8

Instituto Meteorológico Nacional. (2020). Instituto Meteorológico Nacional. San José, Costa Rica. Environmental data requested on 1 June 2020. Station 84 139 CIGEFI.

Kamermans, P., Hemminga, M. A., & De Jong, D. J. (1999). Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Marine Biology, 133, 527–539. https://doi.org/10.1007/s002270050493

Longstaff, B. J., Loneragan, N. R., O’Donohue, M. J., & Dennison, W. C. (1999). Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R.Br.) Hook. Journal of Expxperimental Marine Biology and Ecology, 234(1), 1–27. https://doi.org/https://doi.org/10.1016/S0022-0981(98)00137-3

Magalhães, K. M., Lima, T. H. A., Barcellos, R. L., & Souza, A. M. C. (2025). Halophila baillonii's hidden distribution range: Rediscovery and conservation of a rare seagrass in the Tropical Atlantic. Aquatic Botany, 196, 103828. https://doi.org/10.1016/j.aquabot.2024.103828

Marbà, N., & Duarte, C. M. (1998). Rhizome elongation and seagrass clonal growth. Marine Ecology Progress Series, 174, 269–280. https://doi.org/10.3354/meps174269

McMillan, C. (1976). Experimental studies on flowering and reproduction in seagrasses. Aquatic Botany, 2, 87–92. https://doi.org/10.1016/0304-3770(76)90011-5

McMillan, C. (1980). Flowering under controlled conditions by Cymodocea serrulata, Halophila stipulacea, Syringodium isoetifolium, Zostera capensis and Thalassia hemprichii from Kenya. Aquatic Botany, 8, 323–336. https://doi.org/10.1016/0304-3770(80)90062-5

McMillan, C. (1987). Seed germination and seedling morphology of the seagrass, Halophila engelmannii (Hydrocharitaceae). Aquatic Botany, 28(2), 179–188. https://doi.org/10.1016/0304-3770(87)90039-8

McMillan, C. (1988). Seed germination and seedling development of Halophila decipiens Ostenfeld (Hydrocharitaceae) from Panama. Aquatic Botany, 31(1–2), 169-176. https://doi.org/10.1016/0304-3770(88)90046-0

McMillan, C., & Moseley, F. N. (1967). Salinity tolerances of five marine spermatophytes of Redfish Bay, Texas. Ecology, 48(3), 503–506. https://doi.org/10.2307/1932688

Morales-Ramírez, Á., Acuña-González, J., Lizano, O., Alfaro, E., & Gómez, E. (2015). Rasgos oceanográficos en el Golfo Dulce, Pacífico de Costa Rica: una revisión para la toma de decisiones en conservación marina. Revista de Biología Tropical, 63(Suppl. 1), 131–160. http://dx.doi.org/10.15517/rbt.v63i1.23100

Moses, J. S., & Fredrick, E. J. (2017). Flowers of the intertidal seagrass Halophila stipulacea (Forsskl) Ascherson: a new record from tropical coast of Tanzania, Indo-Pacific. African Journal of Plant Science, 11(7), 294–297. https://doi.org/10.5897/ajps2017.1573

Nguyen, H. M., Yadav, N. S., Barak, S., Lima, F. P., Sapir, Y., & Winters, G. (2020). Responses of invasive and native populations of the seagrass Halophila stipulacea to simulated climate change. Frontiers in Marine Science, 6, 812. https://doi.org/10.3389/fmars.2019.00812

Ogata, E., & Matsui, T. (1965). Photosynthesis in several marine plants of Japan as affected by salinity, drying and pH, with attention to their growth habitats. Botanica Marina, 13, 199–217. https://doi.org/10.1515/botm.1965.8.2-4.199

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ramos, E. A., Tellez, M., Castelblanco-Martinez, N., & May-Collado, L. (2024). Antillean manatees feed on floating Halophila baillonii in Placencia Lagoon, Belize. Latin American Journal of Aquatic Mammals, 19(1), 133–140. https://doi.org/10.5597/lajam00322

Samper-Villarreal, J. (2024). Seagrasses in the Eastern Tropical Pacific: species, distribution ecology, blue carbon, and threats. Latin American Journal of Aquatic Research, 52, 336–349. https://doi.org/10.3856/vol52-issue3-fulltext-3167

Samper-Villarreal, J. (2025). Rare occurrence of only female flowers suggests a lack of sexual reproduction and potential clonality of the seagrass Halophila baillonii Asch. on the Pacific coast of Costa Rica. Aquatic Botany, 196, 103822. https://doi.org/10.1016/j.aquabot.2024.103822

Samper-Villarreal, J., Bourg, A., Sibaja-Cordero, J. A., & Cortés, J. (2014). Presence of a Halophila baillonii Asch. (Hydrocharitaceae) Seagrass meadow and associated macrofauna on the Pacific coast of Costa Rica. Pacific Science, 68(3), 435–444 https://doi.org/10.2984/68.3.10

Samper-Villarreal, J., Cambronero Bolaños, R., Heidemeyer, M., Mora Vargas, M., & Mora Vargas, R. (2020). Characterization of seagrasses at two new locations in the Eastern Tropical Pacific (El Jobo and Matapalito, Costa Rica). Aquatic Botany, 16, 103237. https://doi.org/10.1016/j.aquabot.2020.103237

Samper-Villarreal, J., & Cortés, J. (2020). Seagrass characterization on the southern Pacific coast of Costa Rica: history, vegetation, and environment. Botanica Marina, 63(5), 429–438. https://doi.org/10.1515/bot-2020-0022

Samper-Villarreal, J., Moya-Ramírez, J. & Cortés, J. (2022). First characterization of seagrasses at Sámara Bay, Pacific coast of Costa Rica. Aquatic Botany, 178, 103486. https://doi.org/10.1016/j.aquabot.2021.103486

Samper-Villarreal, J., Rojas-Ortega, G., Vega-Alpízar, J. L., & Cortés, J. (2018a). New sighting of seagrasses in the Eastern Tropical Pacific (Bahía Potrero, Costa Rica). Aquatic Botany, 151, 25–29. https://doi.org/10.1016/j.aquabot.2018.07.010

Samper-Villarreal, J., van Tussenbroek, B. I., & Cortés, J. (2018b). Seagrasses of Costa Rica: from the mighty Caribbean to the dynamic meadows of the Eastern Tropical Pacific. Revista de Biología Tropical, 66(Suppl. 1), S53–S65. https://doi.org/10.15517/rbt.v66i1.33260

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089

Short, F., Carruthers, T., van Tussenbroek, B., & Zieman, J. (2010). Halophila baillonii [Web page]. The IUCN Red List of Threatened Species 2010. Version 3.1. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T173382A7004500.en

Short, F. T., Fernandez, E., Vernon, A., & Gaeckle, J. L. (2006). Occurrence of Halophila baillonii meadows in Belize, Central America. Aquatic Botany, 85(3), 249–251. https://doi.org/10.1016/j.aquabot.2006.04.001

Sidik, B. J., Harah, Z. M., Fakhrulddin, I. M., Anuar, M. K., & Arshad, A. (2010). Growth performance of Malaysian’s spoongrass, Halophila ovalis (R.Br.) Hooker f. under different substrate, salinity and light regime. Coastal Marine Science, 34(1), 103–107.

Thorhaug, A., Blake, N., & Schroeder, P. B. (1978). The effect of heated effluents from power plants on seagrass (Thalassia) communities quantitatively comparing estuaries in the subtropics to the tropics. Marine Pollution Bulletin, 9(7), 181–187. https://doi.org/10.1016/0025-326X(78)90175-3

Torquemada, Y. F., Durako, M. J., & Lizaso, J. L. S. (2005). Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis of Halophila johnsonii Eiseman. Marine Biology, 148, 251–260. https://doi.org/10.1007/s00227-005-0075-5

van Dijk, K., Waycott, M., Biffin, E., Creed, J., Albertazzi, F., & Samper-Villarreal, J. (2023). Phylogenomic Insights into the Phylogeography of Halophila baillonii Asch. Diversity, 15, 111. https://doi.org/10.3390/d15010111

van Katwijk, M. M., Schmitz, G. H. W., Gasseling, A. P., & Van Avesaath, P. H. (1999). Effects of salinity and nutrient load and their interaction on Zostera marina. Marine Ecology Progress Series, 190, 155–165. https://doi.org/10.3354/meps190155

van Tussenbroek, B. I., Santos, M. B., Wong, J. G. R., Van Dijk, K. & Waycott, M. (2010). A guide to the tropical seagrasses of the Western Atlantic. Universidad Nacional Autónoma de México.

Walker, D. I. (1985). Correlations between salinity and growth of the seagrass Amphibolis antarctica (labill.) Sonder & Aschers., In Shark Bay, Western Australia, using a new method for measuring production rate. Aquatic Botany, 23(1), 13–26. https://doi.org/10.1016/0304-3770(85)90017-8

Walker, D. I., & McComb, A. J., (1990). Salinity response of the seagrass Amphibolis antarctica (Labill.) Sonder et Aschers.: an experimental validation of field results. Aquatic Botany, 36(4), 359–366. https://doi.org/10.1016/0304-3770(90)90052-M

Wang, L., English, M., Tomas, F., & Mueller, R. (2021). Recovery and community succession of the Zostera marina rhizobiome after transplantation. Applied and Environmental Microbiology, 87(3), e02326–20. https://doi.org/10.1128/AEM.02326-20

Wesselmann, M., Anton, A., Duarte, C. M., Hendriks, I. E., Agustí, S., Savva, I., Apostolaki, E. T., & Marbà, N. (2020). Tropical seagrass Halophila stipulacea shifts thermal tolerance during Mediterranean invasion. Proceedings of the Royal Society B, 287(1922), 20193001. https://doi.org/10.1098/rspb.2019.3001

Wong, S. (2016). The ecophysiological effects of CO2 enrichment on the seagrass Halophila ovalis [Doctoral dissertation]. Murdoch University, Australia.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.