Abstract
Introduction: The interaction between plants and pollinators is vital for the reproduction of approximately 90% of angiosperms and directly affects ecosystems and agriculture. In tropical regions, 94% of plants require animal pollinators, and in Latin America, 58% of crops depend on pollination by insects. The stability and complexity of plant-pollinator interactions are influenced by several factors, such as floral morphology, which influences nectar accessibility and pollinator specialization.
Objective: To compare the diversity and abundance of insect floral visitors in avocado, apple, plum, and blackberry crops in San Gerardo de Dota, Costa Rica.
Methods: We systematically collected flower-visiting insects in these crops and identified them taxonomically to the lowest possible level. We then estimated alpha diversity for each crop and compared the community composition (beta diversity) of visiting insects among crops.
Results: In 12 sampling visits, we collected a total of 2806 insects from 75 families across all four crops. Alpha diversity was greater in the avocado crop for all three indices (0D, 1D, and 2D). Apis mellifera was the most abundant species in all four crops, but Diptera was the most common group of visiting insects in avocado, particularly flies from the Syrphidae, Muscidae, Calliphoridae, Sarcophagidae, Sciaridae, and Tachinidae families. The insect community of the avocado crop was different from that of the apple, plum, and blackberry crops; however, the insect composition of the other crops was similar.
Conclusions: The avocado crop is generalist in terms of floral visitors; this may be attributed to the size of the flower corolla, as flies with short mouthparts usually choose to feed on flowers with small corollas. Flowers of the other crops have similar morphology and are mainly visited by bees. The native entomofauna are abundant on the crop flowers, likely playing an important role as pollinators.
References
Abernethy, K., Bush, E. R., Forget, P. M., Mendoza, I., & Morellato, L. P. C. (2018). Current issues in tropical phenology: A synthesis. Biotropica, 50(3), 477–482. https://doi.org/10.1111/btp.12558
Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103(9), 1579–1588. https://doi.org/10.1093/aob/mcp076
Basualdo, M., Cavigliasso, P., De Ávila, R. S., Aldea-Sánchez, P., Correa-Benítez, A., Harms, J. M., Ramos, A. K., Rojas-Bravo, V., & Salvarrey, S. (2022). Current status and economic value of insect-pollinated dependent crops in Latin America. Ecological Economics, 196, 107395. https://doi.org/10.1016/j.ecolecon.2022.107395
Bataw, A. A. M. (1995). Pollination ecology of cultivated and wild raspberry (Rubus idaeus) and the behavior of visiting insects. [PhD thesis, University of St. Andrews]. http://hdl.handle.net/10023/14205
Breeze, T. D., Vaissière, B. E., Bommarco, R., Petanidou, T., Seraphides, N., Kozák, L., Scheper, J., Biesmeijer, J. C., Kleijn, D., Gyldenkærne, S., Moretti, M., Holzschuh, A., Steffan-Dewenter, I., Stout, J. C., Pärtel, M., Zobel, M., & Potts, S. G. (2014). Agricultural policies exacerbate honeybee pollination service Supply-Demand mismatches across Europe. PLoS ONE, 9(1), e82996. https://doi.org/10.1371/journal.pone.0082996
Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (Eds.). (2009). Manual of Central American Diptera: Volume 1. NRC Research Press.
Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (Eds.). (2010). Manual of Central American Diptera: Volume 2. NRC Research Press.
Campbell, A. J., Biesmeijer, J. C., Varma, V., & Wäckers, F. L. (2012). Realizing multiple ecosystem services based on the responses of three beneficial insect groups to floral traits and trait diversity. Basic and Applied Ecology, 13(4), 363–370. https://doi.org/10.1016/j.baae.2012.04.003
Carabalí-Banguero, D., Montoya-Lerma, J., & Carabalí, A. (2021). Native bees as putative pollinators of the avocado Persea americana Mill. cv. Hass in Colombia. International Journal of Tropical Insect Science, 41 (4), 2915–2925. https://doi.org/10.1007/s42690-021-00475-x
Carvalheiro, L. G., Veldtman, R., Shenkute, A. G., Tesfay, G. B., Pirk, C. W. W., Donaldson, J. S., & Nicolson, S. W. (2011). Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters, 14(3), 251–259. https://doi.org/10.1111/j.1461-0248.2010.01579.x
Celis-Diez, J. L., García, C. B., Armestó, J. J., Abades, S., Garratt, M. P. D., & Fontúrbel, F. E. (2023). Wild floral visitors are more important than honeybees as pollinators of avocado crops. Agronomy, 13(7), 1722. https://doi.org/10.3390/agronomy13071722
Chanderbali, A. S., Soltis, D. E., Soltis, P. S., & Wolstenholme, B. N. (2013). Taxonomy and botany. In B. A. Schaffer, B. N. Wolstenholme & A. W. Whiley (Eds.), The Avocado: Botany, Production, and Uses (pp. 31–50). CABI.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67. https://doi.org/10.1890/13-0133.1
Cook, D. F., Tufail, M. S., Voss, S. C., Deyl, R. A., Howse, E. T., Foley, J., Norrish, B., Delroy, N., & Shivananjappa, S. L. (2023). Blow flies (Diptera: Calliphoridae) have the ability to pollinate Hass avocado trees within paired tree enclosures. Journal of Applied Entomology, 147(8), 577–591. https://doi.org/10.1111/jen.13159
Cristóbal-Perez, J. E., Barrantes, G, Cascante-Marín, A., Hanson, P., Picado, B., Gamboa-Barrantes, N., Rojas-Malavasi, G., Zumbado, M. A., Madrigal-Brenes, R., Martén-Rodríguez, S., Quesada, M., & Fuchs, E. J. 2024. Elevational and seasonal patterns of plant pollinator networks in two highland tropical ecosystems in Costa Rica. PLoSONE, 19(1), e0295258. https://doi.org/10.1371/journal.pone.0295258
Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L. G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Landis, D. A., Letourneau, D. K., ... Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 5(10) eaax0121. https://doi.org/10.1126/sciadv.aax0121
Davenport, T. L. (1986). Avocado Flowering. In J. Janick (Ed.), Horticultural reviews (Vol. 8, pp. 257–284). John Wiley & Sons.
Dymond, K., Celis‐Diez, J. L., Potts, S. G., Howlett, B. G., Willcox, B. K., & Garratt, M. P. D. (2021). The role of insect pollinators in avocado production: A global review. Journal of Applied Entomology, 145(5), 369–383. https://doi.org/10.1111/jen.12869
Freitas, B. M., Imperatriz-Fonseca, V. L., Medina, L. M., Kleinert, A. de M. P., Galetto, L., Nates-Parra, G., & Quezada-Eúan, J. J. (2009). Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346. https://doi.org/10.1051/apido/2009012
Galetto, L., Aizen, M. A., Del Coro Arizmendi, M., Freitas, B. M., Garibaldi, L. A., Giannini, T. C., Lopes, A. V., Santo, M. M. D. E., Maués, M. M., Nates-Parra, G., Rodríguez, J. I., Quezada-Euán, J. J. G., Vandame, R., Viana, B. F., & Imperatriz-Fonseca, V. L. (2022). Risks and opportunities associated with pollinators’ conservation and management of pollination services in Latin America. Ecología Austral, 32(1), 055–076. https://doi.org/10.25260/ea.22.32.1.0.1790
Garibaldi, L. A., Steffan-Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R., Cunningham, S. A., Carvalheiro, L. G., Chacoff, N. P., Dudenhöffer, J. H., Greenleaf, S. S., Holzschuh, A., Isaacs, R., Krewenka, K., Mandelik, Y., Mayfield, M. M., Morandin, L. A., Potts, S. G., Ricketts, T. H., Szentgyörgyi, H., ... Klein, A. M. (2011). Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 14(10), 1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x
Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S., ... Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339(6127), 1608–1611. https://doi.org/10.1126/science.1230200
Gilbert, F. S. (1981). Foraging ecology of hoverflies: morphology of the mouthparts in relation to feeding on nectar and pollen. Ecological Entomology, 6(3), 245–262. https://doi.org/10.1111/j.1365-2311.1981.tb00612.x
Gilbert, F. S. (1985). Ecomorphological relationships in hoverflies (Diptera, Syrphidae). Proceedings of the Royal Society of London B, 224(1234), 91–105. https://doi.org/10.1098/rspb.1985.0023
Gómez, J. M., Abdelaziz, M., Lorite, J., Muñoz‐Pajares, A. J., & Perfectti, F. (2010). Changes in pollinator fauna cause spatial variation in pollen limitation. Journal of Ecology, 98(5), 1243–1252. https://doi.org/10.1111/j.1365-2745.2010.01691.x
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A., & Totland, Ø. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. https://doi.org/10.1111/2041-210X.12613
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2016). The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production (S. G. Potts, V. L. Imperatriz-Fonseca, & H. T. Ngo, Eds.). IPBES Secretariat. https://doi.org/10.5281/zenodo.3402856
Ish-Am, G., Barrientos-Priego, F., Castañeda-Vildozola, A., & Gazit, S. (1999). Avocado (Persea americana Mill.) pollinators in their region of origin. Revista Chapingo Serie Horticultura, 5, 137–143. https://doi.org/10.5154/r.rchsh.1999.05.137
Juárez, M. E., Kappelle, M., & van Omme, L. (2000). Lista de la flora vascular de la cuenca superior del Río Savegre, San Gerardo de Dota, Costa Rica. Acta Botánica Mexicana, 51, 1–12. https://doi.org/10.21829/abm51.2000.848
Katumo, D. M., Liang, H., Ochola, A. C., Lv, M., Wang, Q., & Yang, C. (2022). Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Diversity, 44(5), 429–435. https://doi.org/10.1016/j.pld.2022.01.005
Kearns, C. A., Inouye, D. W., & Waser, N. M. (1998). Endangered mutualisms: The conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics, 29(1), 83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83
Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
Lowell, E. S. H., Morris, J., Vidal, M. C., Durso, C., & Murphy, J. M. (2019). The effect of specific cues on honey bee foraging behavior. Apidologie, 50(4), 454–462. https://doi.org/10.1007/s13592-019-00657-0
Mengual, X., Ruiz, C., Rojo, S., Ståhls, G., & Thompson, F. C. (2009). A conspectus of the flower fly genus Allograpta (Diptera: Syrphidae) with a description of a new subgenus and species. Zootaxa, 2214(1), 1–28. https://doi.org/10.11646/zootaxa.2214.1.1
Michener, C. D., McGinley, R. J., & Danforth, B. N. (1994). The bee genera of North and Central America (Hymenoptera: Apoidea). Smithsonian Institution.
Montero, B. K., Gamboa-Barrantes, N., Rojas-Malavasi, G., Cristóbal-Perez, E. J., Barrantes, G., Cascante-Marín, A., Hanson, P., Zumbado, M. A., Madrigal-Brenes, R., Martén-Rodríguez, S., Quesada, M., & Fuchs, E. J. (2025). Pollen metabarcoding reveals a broad diversity of plant sources available to farmland flower visitors near tropical montane forest. Frontiers in Plant Science, 15, 1472066. https://doi.org/10.3389/fpls.2024.1472066
Muñoz, A. E., Amouroux, P., & Zaviezo, T. (2021). Native flowering shrubs promote beneficial insects in avocado orchards. Agricultural and Forest Entomology, 23(4), 463–472. https://doi.org/10.1111/afe.12447
Nation, J. L. (1983). A new method using hexamethyldisilazane for the preparation of soft insect tissues for scanning electron microscopy. Stain Technology, 58(6), 347–351. https://doi.org/10.3109/10520298309066811
Nicholls, C. I., & Altieri, M. A. (2012). Plant biodiversity enhances bees and other insect pollinators in agroecosystems: A review. Agronomy for Sustainable Development, 33(2), 257–274. https://doi.org/10.1007/s13593-012-0092-y
Nicholson, C. C., & Egan, P. A. (2019). Natural hazards pose threats to pollinators and pollination. Global Change Biology, 26(2), 380–391. https://doi.org/10.1111/gcb.14840
Okello, E. N., Amugune, N. O., Mukiama, T. K., & Lattorff, H. M. G. (2021). Abundance and community composition of flower visiting insects of avocado (Persea americana Mill.) in the East African region. International Journal of Tropical Insect Science, 41(4), 2821–2827. https://doi.org/10.1007/s42690-021-00463-1
Oksanen, J. (2022). Vegan: Ecological diversity (vignette). https://cran.r-project.org/web/packages/vegan/vignettes/diversity-vegan.pdf
Pardo, A., & Borges, P. A. V. (2020). Worldwide importance of insect pollination in apple orchards: A review. Agriculture, Ecosystems & Environment, 293, 106839. https://doi.org/10.1016/j.agee.2020.106839
Percy, D. M., Page, R. D. M., & Cronk, Q. C. B. (2004). Plant–insect interactions: Double-dating associated insect and plant lineages reveals asynchronous radiations. Systematic Biology, 53(1), 120–127. https://doi.org/10.1080/10635150490264996
Pérez-Méndez, N., Andersson, G. K. S., Requier, F., Hipólito, J., Aizen, M. A., Morales, C. L., García, N., Gennari, G. P., & Garibaldi, L. A. (2020). The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 57(3), 599–608. https://doi.org/10.1111/1365-2664.13561
Pincebourde, S., van Baaren, J., Rasmann, S., Rasmont, P., Rodet, G., Martinet, B., & Calatayud, P. A. (2017). Plant–insect interactions in a changing world. In N. Sauvion, D. Thiéry, & P.-A. Calatayud (Eds.), Advances in botanical research: Insect–plant interactions in a crop protection perspective (Vol. 81, pp. 289–332). Academic Press. https://doi.org/10.1016/bs.abr.2016.09.009
R Core Team. (2023). A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos, 130(3), 321–338. https://doi.org/10.1111/oik.07202
Sargent, R. D., & Ackerly, D. D. (2008). Plant–pollinator interactions and the assembly of plant communities. Trends in Ecology & Evolution, 23(3), 123–130. https://doi.org/10.1016/j.tree.2007.11.003
Settele, J., Bishop, J., & Potts, S. G. (2016). Climate change impacts on pollination. Nature Plants, 2(7), 16092. https://doi.org/10.1038/nplants.2016.92
Solano, J., & Villalobos, R. (2001). Aspectos fisiográficos aplicados a un bosquejo de regionalización geográfico-climático de Costa Rica. Tópicos Meteorológicos y Oceanográficos, 8(1), 26–39. https://www.researchgate.net/publication/228799654_Aspectos_Fisiograficos_aplicados_a_un_Bosquejo_de_Regionalizacion_Geografico_Climatico_de_Costa_Rica
Stoddard, F. L. (2017). Climate change can affect crop pollination in unexpected ways. Journal of Experimental Botany, 68(8), 1819–1821. https://doi.org/10.1093/jxb/erx075
Strauss, S. Y., & Zangerl, A. R. (2009). Plant–insect interactions in terrestrial ecosystems. In C. M. Herrera & O. Pellmyr (Eds.), Plant–animal interactions: An evolutionary approach (pp. 77–108). Blackwell Science.
Underwood, N., Hambäck, P. A., & Inouye, B. D. (2020). Pollinators, herbivores, and plant neighborhood effects. The Quarterly Review of Biology, 95(1), 37–57. https://doi.org/10.1086/707863
Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change: The need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272(1581), 2561–2569. https://doi.org/10.1098/rspb.2005.3356
Vithanage, V. (1990). The role of the European honeybee (Apis mellifera L.) in avocado pollination. Journal of Horticultural Science, 65(1), 81–86. https://doi.org/10.1080/00221589.1990.11516033
Willmer, P. G., Bataw, A. A. M., & Hughes, J. P. (1994). The superiority of bumblebees to honeybees as pollinators: Insect visits to raspberry flowers. Ecological Entomology, 19(3), 271–284. https://doi.org/10.1111/j.1365-2311.1994.tb00419.x
Winfree, R. (2010). Conservation and restoration of wild bees. Annals of the New York Academy of Sciences, 1195(1), 169–197. https://doi.org/10.1111/j.1749-6632.2010.05449.x
Zebelo, S. A., & Maffei, M. E. (2015). Role of early signaling events in plant–insect interactions. Journal of Experimental Botany, 66(2), 435–448. https://doi.org/10.1093/jxb/eru480
##plugins.facebook.comentarios##

This work is licensed under a Creative Commons Attribution 4.0 International License.