Resumen
Orchidaceae is a highly dependent group on the Rhizoctonia complex that includes Ceratorhiza, Moniliopsis, Epulorhiza and Rhizoctonia, for seed germination and the development of new orchid plants. Thus, the isolation and identification of orchid mycorrhizal fungi are important to understand the orchid-fungus relationship, which can lead to the development of efficient conservation strategies by in vivo germination of seeds from endangered orchid plants. The aim of our work was to isolate and characterize the different mycorrhizal fungi found in roots of terrestrial orchids from Córdoba (Argentina), and, to learn about the natural habit and fungal associations in the Chaco Serrano woodland pristine region. In this study, bloomed orchid root and rhizosphere soil samples were obtained in two times from Valle de Punilla during spring of 2007; samples were kept in plastic bags until processed within 48 hours, and mycorrhizal condition confirmed assessing peloton presence. A total of 23 isolates of the orchideous mycorrhizal Rhizoctonia complex were obtained. The isolates were studied based on morphological characters and ITS-rDNA sequences. Morphological characteristics as color of colonies, texture, growth rate, hyphal diameter and length and presence of sclerotia were observed on culture media. To define the number of nuclei per cell, the isolates were grown in Petri dishes containing water-agar (WA) for three days at 25°C and stained with Safranine-O solution. The mycorrhizal fungi were grouped into binucleate (MSGib, 10 isolates) and multinucleate (MSGim, 13 isolates) based on morphological characteristics of the colonies. We obtained 1The ITS1-5.8s-ITS4 region that was amplified using primers ITS1 and ITS4. Based on DNA sequencing, isolates Q23 and Q29 were found to be related to species of Ceratobasidium. Isolates Q24 and Q4 were related to the binucleated anastomosis group AG-C of Rhizoctonia sp. The rest of the isolates grouped in the Ceratobasidium clade without grouping. From our knowledge this is the first report of the association of the AG-C testers with terrestrial orchids. A high specificity was observed in the symbiotic relationship. As the mycorrhizal fungal isolates were obtained from native orchids, they could be incorporated in conservation programes of endangered orchids in Argentina.
Citas
Bandoni, R. J. (1979). Safranin O as a rapid nuclear stain for fungi. Mycologia, 71, 873-874.
Batty, A. L., Dixon, K. W., Brundrett, M., & Sivasithamparam, K. (2001). Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytologist, 152(3), 511-520.
Bonnardeaux, Y., Brundrett, M., Batty, A., Dixon, K., Koch, J., & Sivasithamparam, K. (2007). Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycological Research, 3, 51-61.
Cagnolo, L., Cabido, M., & Valladares, G. (2006). Plant species richness in the Chaco Serrano Woodland from central Argentina: ecological traits and habitat fragmentation effects. Biological Conservation, 132, 510-519.
Dearnaley, J. D. W. (2007). Further advances in orchid mycorrhizal research. Mycorrhiza, 17, 475-48.
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2013). Infostat (Versión 2013). Grupo Infostat, Fca, Universidad Nacional De Córdoba, Argentina. Retrieved from http://www.infostat.com.ar.
Eisold, A. M., & Grosch, R. (2010). Root tips of Dactylorhiza species. Ökologisch, M., & Mykorrhiza Symbiose, R. PG Mikrobielle Symbiose N. Zusammenfassungen der Arbeitskreisbeiträge. Retrieved from http://dpg.phytomedizin.org/fileadmin/daten/04_Verlag/03_JB/Jahresbericht_2010.pdf
Fang, X., Finnegan, P. M., & Barbetti, M. J. (2013). Wide Variation in Virulence and Genetic Diversity of Binucleate Rhizoctonia Isolates Associated with Root Rot of Strawberry in Western Australia. PLoS ONE, 8(2), 1-14.
Fracchia, S., Aranda, A., Gopar, A., Silvani, V., Fernandez, L., & Godeas, A. (2009). Mycorrhizal status of plant species in the Chaco Serrano Woodland from central Argentina. Mycorrhiza, 19, 205-214.
Fracchia, S., Silvani, V., Flachsland, E., Terada, G., & Sede, S. (2014). Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza, 24(1), 35-43.
Girlanda, M., Segreto, R., Cafasso, D., Liebel, H., Rodda, M., Ercole, E., Cozzolino, S., Gebauer, G., & Perotto, S. (2011). Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. American Journal of Botany, 98(7), 1148-1163.
Goloboff, P. A. (1999). NONA (ver. 2.0). Tucumán, Argentina: published by the author.
Jones, D. L. (2006). Miscellaneous new species of Australian Orchidaceae Austral. Orchid Research, 5, 45-111.
Harju, S., Fedosyuk, H., & Peterson, K. R. (2004). Rapid isolation of yeast genomic DNA. Bust n´Grab. BMC Biotechnology, 4-8.
Ma, M., Tan, T. K., & Wong, S. M. (2003). Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycological Research, 107, 1041-1049.
McCormick, M. K., Whigham, D. F., & O'Neill, J. (2004). Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytologist, 163(2), 425-438.
McCormick, M. K., Whigham, D. F., Sloan, D., O´Malley, K., & Hodkinson, B. (2006). Orchid-fungus fidelity: a marriage meant to last? Ecology, 87(4), 903-911.
Nixon, K. C. (2002). WinClada (version 1.00.08). Ithaca, NY: Published by the author, p. 29.
Otero, J. T., Bayman, P., & Ackerman, J. D. (2005). Variation in mycorrhizal performance in the epiphytic orchid Tolumnia variegata in vitro: the potential for natural selection. Evolutionary Ecology, 19, 29-43.
Phyllips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-161.
Richardson, K. A., Currah, R. S., & Hambleton, S. (1993). Basidiomycetous endophytes from the roots of Neotropical epiphytic Orchidaceae. Lindleyana, 8, 127-137.
Shan, X. C., Liew, E. C. Y., Weatherhead, M. A., & Hodgkiss, I. J. (2002). Characterization and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia, 94, 230-239.
Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.
Urcelay, C., Pasquín, R., Canovas, S., & Liébana, V. (2005). Colonización micorrícica en tres especies de Orquídeas nativas de las Sierras de Córdoba, Argentina. Kurtziana, 31(1-2), 51-57.
Vilgalys, R., & Cubeta, M. A. (1994). Molecular Systematics and Population Biology of Rhizoctonia. Annual Review of Phytopathology, 32, 135-155.
Vischi, N., Natale, E., & Villamil, C. (2004). Six endemic plant species from central Argentina: an evaluation of their conservation status. Biodiversity and Conservation, 13, 997-1008.
Waterman, R. J., & Bidartondo, M. I. (2008). Deception above, deception below: linking pollination and mycorrhizal biology of orchids. Journal of Experimental Botany, 59(5), 1085-1096.
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Shinsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315-322). San Diego: Academic.
Zelmer, C. D., & Currah, R. H. (1997). Symbiotic germination of Spiranthes lacera (Orchidaceae) with a naturally occuring endophyte. Lindleyana, 12, 142-148.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2015 Revista de Biología Tropical