Resumen
We conducted a 5-month experiment at Turpialito in the Golfo de Cariaco, Venezuela, to examine whether the previously reported more rapid growth of scallop Euvola ziczac in bottom compared to suspended culture can be attributed to more abundant or higher quality food resources near the sediment/water interface. The various body components (shell, muscle, digestive gland, gonad and remaining tissues) increased in size at a much greater rate for scallops maintained on the bottom, in partly buried cages at 5 m in depth, than in cages suspended at the same depth in the water column. Furthermore, survival was greater on the bottom. Food abundance and quality were examined by analyzing the seston collected in sediment traps at the sediment/water interface in the vicinity of the bottom cages and next to the suspended cages. Phytoplankton abundance (chlorophyll a) and the proportion of various fatty acids in the lipid fraction of the seston were similar on the bottom and in suspension. However, sestonic protein, lipid and carbohydrate levels, and the estimated energetic content of the seston, were higher on the bottom than in suspension, and probably contributed to the greater growth on the bottom. As the increase in the energetic content of the seston on the bottom compared to in suspension was less than the increase in growth (biomass) on the bottom compared to in suspension, and the evidence showed in previous studies above the negative influence of fouling and wave action in suspended culture, we conclude that the more rapid growth of Euvola ziczac in bottom than suspended culture is principally due to stress relative to suspended culture system.Citas
Bayne, B.L. & R.C. Newell. 1983. Physiological energetics of marine molluscs, p. 407-515. In A.S.M. Saleuddin & K.M. Wilbur (eds.). The Mollusca. 4., Academy, NewYork, New York.
Bernard, F.R. 1983. Physiology and the mariculture of some northeastern Pacific bivalve molluscs. Can.
Spec. Publ. Fish. Aquat. Sci. 63: 24 p.
Bligh, E.G. & W.J Dryer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem.
Physiol. 37: 911-917.
Boadas, M. A., O. Nusetti, F. Mundarain, C. Lodeiros, & H.E. Guderley. 1997. Seasonal variation in the properties of muscle mitochondria from the tropical scallop, Euvola (Pecten) ziczac. Mar. Biol. 128: 247-255.
Bricelj, V.M. & S. Shumway. 1991. Physiology: energy acquisition and utilization, p. 305-346. In S.E.
Shumway (ed.). Scallops: Biology, Ecology and Aquaculture, Elservier/North Holland, NewYork, New York.
Emerson, C.M. 1991. A method for measurements of bedload sediment transport and passive faunal transport on intertidal sandflats. Estuaries 14: 361-371.
Dubois, M., J. Gilles, J. Hamilton, P. Reber & F. Smith 1956. Colorimetric method for determination of
sugars and related substances. Ann. Chem. 28: 2350-2356.
Ferraz-Reyes, E. 1987. Productividad primaria del Golfo de Cariaco. Boletín Instituto Oceanográfico Universidad de Oriente 26: 97-110.
Freites, L., J. Côté, J.H. Himmelman & C. Lodeiro. 1999. Effects of wave action on the growth and survival of scallops Euvola ziczac and Lyropecten nodosus in suspended culture. J. Exp. Mar. Biol. Ecol. 239: 47-59.
Griffiths, C.L. & R.J. Griffiths. 1987. Bivalvia, pp. 1- 88. In J.H. Pandian & F.J Vernberg (eds.). Animal Energetics, Volume 2. Academic, NewYork, New York.
Gnaiger, E. & G. Bitterlich 1984. Proximate biochemical composition and caloric content calculated from
elemental CHN analysis: a stoichiometric concept. Oecologia 62: 289-298.
Leighton, D.L. 1979. Growth profile for the rock scallop Hinnites multirugosus held in several depths at La Jolla, California. Mar. Biol. 51: 229-232.
Lodeiros, C.J. & J.H. Himmelman. 1994. Relations among environmental conditions and growth in the tropical scallop Euvola (Pecten) ziczac (L.) in suspended culture in the Golfo de Cariaco, Venezuela. Aquaculture 119: 345-358.
Lodeiros, C.J. & J.H. Himmelman. 1996. Influence of fouling on the growth and survival of the tropical scallop, Euvola (Pecten) ziczac (L. 1758) in suspended culture. Aquaculture Res. 27: 749-756.
Lodeiros, C.J.M., Himmelman, J.H. 2000. Identification of factors affecting growth and survival of the tropical scallop Euvola (Pecten) ziczac in suspended culture in the Golfo de Cariaco, Venezuela 182: 91-114
Lodeiros Seijo, C. 2002. Una cuestión de peso y de posición. Rev. Biol. Trop. 50(3/4): 875-878.
Lowry, D.H., N.J. Rosebrough, A.L. Farr & R.J. Randall. 1951. Protein measurement with folin-phenol reagent. J. Biol. Chem. 19: 265-275.
MacDonald, B.A. & R.J. Thompson. 1985a. Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. I. Growth rates of shell and somatic tissue. Mar. Ecol. Prog. Ser. 25: 279-294.
MacDonald, B.A.& R.J. Thompson. 1985b. Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. II. Reproductive output and total production. Mar. Ecol. Prog. Ser. 25: 295-303.
Mandelli, E. & E. Ferraz-Reyes. 1982. Primary production and phytoplankton dynamics in a tropical inlet, Gulf of Cariaco, Venezuela. Int. Rev. Hydrobiol. 67: 85-95.
Metcalfe, L.D. & A.A. Schmitz. 1961. The rapid preparation of fatty acids esters for gas chromatographic analysis. Science 33: 363-364.
Okuda, T., J. Benitez-Alvarez, J. Bonilla & C. Cedeño. 1978. Caracteristicas hidrográficas del Golfo de Cariaco, Venezuela. Boletín Instituto Oceanográfico Universidad de Oriente 17: 69-88.
Okuda, T. 1981. Water exchange and the balance of phosphate in the Gulf of Cariaco, Venezuela. In
F.A. Richard (ed.), Coastal Upwelling, Coastal and Estuarine Sci. 1: 274-281.
Pöhl, P. & F. Zurheide. 1979. Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors, p. 473-523. In H.A. Hoppe, T. Levring & Y. Tanaka (eds.). Marine algae in pharmaceutical science. Walter de Gruyter, Berlin.
Strickland, J.D.H. & T.R. Parsons. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd.
Canada No. 167: 310 p.
Thompson, R. J. & B.A. MacDonald. 1991. Physiological integrations and energy partitioning, p. 347-376. In S.E. Shumway (ed.). Scallops: Biology, Ecology and Aquaculture. Developments in Aquaculture and Fisheries Science Volume 21, Elsevier Science, The Hague, Holland.
Vélez, A. & L. Freites. 1993. Cultivo de “semillas” de la vieira Pecten ziczac bajo condiciones ambientales controladas. Memorias IV Congreso Ciencias del Mar, Serie Ocasional No. 2, Faculdad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile, p. 311-317.
Vélez, A., L. Freites, J.H. Himmelman, W. Senior & N. Marín. 1995. Growth of the tropical scallop, Euvola (Pecten) ziczac, in bottom and suspended culture in the Golfo de Cariaco, Venezuela. Aquaculture 136: 257-276.
Wallace, J.C. & T.G. Reinsnes. 1985. The significance of various environmental parameters for growth of the Iceland scallop, Chlamys islandica (Pectinidae), in hanging culture. Aquaculture 44: 29-242.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2005 Revista de Biología Tropical