Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Efecto de la temperatura sobre la expresión de genes IFN-1(α), STAT-1 y Mx-1 en alevines de trucha arcoíris Oncorhynchus mykiss (Salmoniformes: Salmonidae) expuestos al el virus de la necrosis pancreática infecciosa (IPNV)
PDF (English)
HTML (English)

Palabras clave

IPNV
temperature
rainbow trout
fry
ISGs
real-time PCR
mortality
IPNV
temperatura
trucha arcoíris
alevines
ISGs
PCR tiempo- real
mortalidad

Cómo citar

Arguedas Cortés, D., Romero Zuñiga, A. P., Enriquez Sais, R., Martínez Castañeda, J. S., & Ortega Santana, C. (2015). Efecto de la temperatura sobre la expresión de genes IFN-1(α), STAT-1 y Mx-1 en alevines de trucha arcoíris Oncorhynchus mykiss (Salmoniformes: Salmonidae) expuestos al el virus de la necrosis pancreática infecciosa (IPNV). Revista De Biología Tropical, 63(2), 559–569. https://doi.org/10.15517/rbt.v63i2.15701

Resumen

El virus de la necrosis pancreática infecciosa (IPNV) es el agente etiológico de una enfermedad aguda bien caracterizada en salmónidos alrededor del mundo. Los signos clínicos y la tasa de mortalidad dependen de varios factores tales como la dosis viral, la edad del pez y la temperatura del agua, entre otros. Un estudio experimental se llevó a cabo para medir el efecto de la temperatura sobre el perfil de expresión génica de IFN-1(α), STAT-1 y Mx-1 en alevines de trucha arcoíris expuestos con IPNV. Los alevines (n=198) fueron expuestos a 8, 12 y 16°C, y se tomaron muestras durante 21 días para determinar el título viral y la expresión génica. En los primeros 11 días el mayor titulo viral se registró a 8ºC en comparación con 12 y 16. A 8°C, existió un incremento significativo en el día 4 del ARNm de Mx-1 (t-test, p<0.05), momento en que el título viral empezó a disminuir. Además conforme el título viral aumentaba, también STAT-1 y Mx-1 aumentaron (r=0.91) y (r=0.96) respectivamente. Los animales fueron capaces de recuperarse desde el día 4 de algunos de los síntomas de IPN. La enfermedad clínica se desarrolló únicamente en peces expuestos a 12°C y todos murieron entre el día 6 y 14, a pesar del incremento altamente significativo mostrado en el nivel promedio de expresión de Mx-1 a 12°C, comparados con los valores registrados a 8 y 16°C (Tukey, p<0.0001). Además los perfiles de expresión de IFN-1(α) y STAT-1 decrecieron el día 7 completamente (~0.016) y (~0.020) veces, respectivamente. El nivel de expresión promedio más alto de IFN-1(α) se registró a 16°C (Tukey, p<0.0005). Los alevines expuestos a 16°C se mostraron normales durante el experimento. IFN-1(α) posiblemente generó un efecto protector desde el día 2 cuando mostró un aumento significativo en comparación con los resultados a 8 y 12°C (t-student, p<0.0001); sin embargo, STAT-1 no fue afectado de manera significativa por la temperatura, aunque el más alto valor de expresión promedio se registró a 16°C. Nuestra investigación confirma que la expresión de genes relevantes de respuesta antiviral como IFN-1(α), STAT-1 y Mx-1 son fisiológicamente modulados por la temperatura del agua, influyendo directamente en el desarrollo de la enfermedad de IPN en trucha arcoíris.

https://doi.org/10.15517/rbt.v63i2.15701
PDF (English)
HTML (English)

Citas

Battersby, B. J., & Moyes, C. D. (1998). Influence of acclimation temperature on mitochondrial DNA, RNA, and enzymes in skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 275, 905-912.

Collet, B., Boudinot, P., Benmansour, A., & Secombes, C. J. (2004). An Mx1 promoter–reporter system to study interferon pathways in rainbow trout. Developmental & Comparative Immunology, 28, 793-801.

Dios, S., Romero, A., Chamorro, R., Figueras, A., & Novoa, B. (2010). Effect of the temperature during antiviral immune response ontogeny in teleosts. Fish & Shellfish Immunology, 29, 1019-1027.

Dobos, P. (1995). The molecular biology of infectious pancreatic necrosis virus (IPNV). Annual Review of Fish Diseases, 5, 25-54.

Eaton, W. D. (1990). Anti-viral activity in four species of salmonids following exposure to poly inosinic: cytidylic acid. Diseases of Aquatic Organisms, 9, 193-198.

Feng, H., Liu, H., Kong, R., Wang, L., Wang, Y., Hu, W., & Guo, Q. (2011). Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish & Shellfish Immunology, 30, 1159-1169.

García, I., Galiana, A., Falcó, A., Estepa, A., & Perez, L. (2011). Characterization of an infectious pancreatic necrosis (IPN) virus carrier cell culture with resistance to superinfection with heterologous viruses. Veterinary Microbiology, 149, 48-55.

Gravell, M., & Malsberger, R. G. (1965). A permanent cell line from the fathead minnow (Pimephales promelas). Annals of the New York Academy of Sciences, 126, 555-565.

Guderley, H. (2004). Metabolic responses to low temperature in fish muscle. Biological Reviews, 79, 409-427.

Haverinen, J., & Vornanen, M. (2007). Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292, 1023-1032.

Herbomel, P., Thisse, B., & Thisse, C. (2001). Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through an M-CSF receptor-dependent invasive process. Developmental Biology, 238, 274-288.

Hill, B. J., & Way, K. (1995). Serological classification of infectious pancreatic necrosis (IPN) virus and other aquatic birnaviruses. Annual Review of Fish Diseases, 5, 55-77.

Imajoh, M., Hirayama, T., & Oshima, S. I. (2005). Frequent occurrence of apoptosis is not associated with pathogenic infectious pancreatic necrosis virus (IPNV) during persistent infection. Fish & Shellfish Immunology, 18, 163-177.

Jørgensen, J. B., Johansen, A., Hegseth, M. N., Zou, J., Robertsen, B., Collet, B., & Secombes, C. J. (2007). A recombinant CHSE-214 cell line expressing an Mx1 promoter–reporter system responds to both interferon type I and type II from salmonids and represents a versatile tool to study the IFN-system in teleost fish. Fish & Shellfish Immunology, 23, 1294-1303.

Kinkelin, P., & Dorson, M. (1973). Interferon production in rainbow trout (Salmo gairdneri) experimentally infected with Egtved virus. Journal of General Virology, 19, 125-127.

Kochs, G., Reichelt, M., Danino, D., Hinshaw, J. E., & Haller, O. (2005). Assay and Functional Analysis of Dynamin‐Like Mx Proteins. Methods in Enzymology, 404, 632-643.

Kodama, H., Matsuoka, Y., Tanaka, Y., Liu, Y., Iwasaki, T., & Watarai, S. (2004). Changes of C-reactive protein levels in rainbow trout (Oncorhynchus mykiss) sera after exposure to anti-ectoparasitic chemicals used in aquaculture. Fish & Shellfish Immunology, 16, 589-597.

Kraffe, E., Marty, Y., & Guderley, H. (2007). Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. Journal of Experimental Biology, 210, 149-165.

Larsen, R., Røkenes, T. P., & Robertsen, B. (2004). Inhibition of infectious pancreatic necrosis virus replication by Atlantic salmon Mx1 protein. Journal of Virology, 78, 7938-7944.

Levy, D. E., & Garcı́a, A. (2001). The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine & Growth Factor Reviews, 12, 143-156.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25, 402-408.

Matsuo, A., Oshiumi, H., Tsujita, T., Mitani, H., Kasai, H., Yoshimizu, M., & Seya, T. (2008). Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. The Journal of Immunology, 181, 3474-3485.

M'gonigle, R. H. (1941). Acute catarrhal enteritis of salmonid fingerlings. Transactions of the American Fisheries Society, 70, 297-303.

Moss, L. H., & Gravell, M. (1969). Ultrastructure and sequential development of infectious pancreatic necrosis virus. Journal of Virology, 3, 52-58.

Nikoskelainen, S., Bylund, G., & Lilius, E. M. (2004). Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Developmental & Comparative Immunology, 28, 581-592.

OIE. (2006). Manual of diagnostic test for aquatic animals. Paris, France: World Organization for Animal Health.

Ortega, C., & Enríquez, R. (2007). Factores asociados a la infección celular por el virus de la necrosis pancreática infecciosa (IPNV). Archivos de Medicina Veterinaria, 39, 7-18.

Ortega, C., Montes de Oca, R. M., Groman, D., Yason, C., Nicholson, B., & Blake, S. (2002). Case report: viral infectious pancreatic necrosis in farmed rainbow trout from Mexico. Journal of Aquatic Animal Health, 14, 305-310.

Padron, D., Bizeau, M. E., & Hazel, J. R. (2000). Is fluid-phase endocytosis conserved in hepatocytes of species acclimated and adapted to different temperatures? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 278, 529-536.

Pérez-Prieto, S. I. (2003). Infectious pancreatic necrosis virus: biology, pathogenesis, and diagnostic methods. Advances in Virus Research, 62, 113-135.

Platanias, L. C. (2005). Mechanisms of type-I-and type-II-interferon-mediated signalling. Nature Reviews Immunology, 5, 375-386.

Raida, M. K., & Buchmann, K. (2007). Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri vaccination. Diseases of Aquatic Organisms, 77, 41-52.

Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27, 493-497.

Roberts, R. J., & Pearson, M. D. (2005). Infectious pancreatic necrosis in Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 28, 383-390.

Roberts, T. E., & Dobos, P. (1983). Studies on the mechanism of temperature sensitivity of infectious pancreatic necrosis virus replication. Journal of General Virology, 64, 331-339.

Robertsen, B. (2006). The interferon system of teleost fish. Fish & Shellfish Immunology, 20, 172-191.

Robertsen, B., Bergan, V., Røkenes, T., Larsen, R., & Albuquerque, A. (2003). Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity. Journal of Interferon & Cytokine Research, 23, 601-612.

Rubio-Godoy, M. (2010). Teleost fish immunology. Revista Mexicana de Ciencias Pecuarias, 1, 43-57.

Ruiz, F. A., & De Blas, I. (2003). Factors affecting the immune response in fish virus infections. AquaTIC, 19, 1-7.

Saint-Jean, S. R., Borrego, J. J., & Pérez-Prieto, S. I. (2003). Infectious Pancreatic Necrosis Virus: Biology, pathogenesis and diagnostic methods. Advances in Virus Research, 62,113-165.

Saint-Jean, S. R., & Pérez-Prieto, S. I. (2007). Effects of salmonid fish viruses on Mx gene expression and resistance to single or dual viral infections. Fish & Shellfish Immunology, 23, 390-400.

Santi, N., Vakharia, V. N., & Evensen, Ø. (2004). Identification of putative motifs involved in the virulence of infectious pancreatic necrosis virus. Virology, 322, 31-40.

Sen, G. C. (2001). Viruses and interferons. Annual Reviews in Microbiology, 55, 255-281.

Skjesol, A., Aamo, T., Hegseth, M. N., Robertsen, B., & Jørgensen, J. B. (2009). The interplay between infectious pancreatic necrosis virus (IPNV) and the IFN system: IFN signaling is inhibited by IPNV infection. Virus Research, 143, 53-60.

Smail, D. A., Bain. N., Bruno, D. W., King, J. A., Thompson, F., Pendrey, D. J., & Cunningham, C. O. (2006). Infectious pancreatic necrosis virus in Atlantic salmon (Salmo salar) post‐smolts in the Shetland Isles, Scotland: virus identification, histopathology, immunohistochemistry and genetic comparison with Scottish mainland isolates. Journal of Fish Diseases, 29, 31-41.

Suzuki, Y., Otaka, T., Sato, S., Hou, Y. Y., & Aida, K. (1997). Reproduction related immunoglobulin changes in rainbow trout. Fish Physiology and Biochemistry, 17, 415-421.

Verrier, E. R., Langevin, C., Benmansour, A., & Boudinot, P. (2011). Early antiviral response and virus-induced genes in fish. Developmental & Comparative Immunology, 3, 1204-1214.

Wolf, K. (1988). Fish viruses and fish viral diseases. US: Comstock Publishing Associates.

Wolf, K. (1966). Infectious pancreatic necrosis (IPN) of salmonid fishes. Fish, 1, 1-8.

Wolf, K., Snieszko, S. F., Dunbar, C. E., & Pyle, E. (1960). Virus nature of infectious pancreatic necrosis in trout. Experimental Biology and Medicine, 104, 105-108.

Wu, Y. C., Lu, Y. F., & Chi, S. C. (2010). Anti-viral mechanism of barramundi Mx against betanodavirus involves the inhibition of viral RNA synthesis through the interference of RdRp. Fish & Shellfish Immunology, 28, 467-475.

Xu, L. G., Wang, Y. Y., Han, K. J., Li, L. Y., Zhai, Z., & Shu, H. B. (2005). VISA is an adapter protein required for virus-triggered IFN-β signaling. Molecular Cell, 19, 727-740.

Zhou, Z., Hamming, O. J., Ank, N., Paludan, S. R., Nielsen, A. L., & Hartmann, R. (2007). Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. Journal of Virology, 81, 7749-7758.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2015 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.