Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Changes in body size spectra of benthic caridean shrimps (Decapoda: Caridea) and snails (Gastropoda) as response to seasonal variability
PDF
HTML

Keywords

allometry
energetic equivalence
Mexico
non-equilibrium
power functions
seasonal changes.
alometría
equivalencia energética
México
no-equilibrio
funciones de potencia
cambios estacionales.

How to Cite

Badano, E. I., Labra, F. A., Martínez-Pérez, C. G., & Vergara, C. H. (2016). Changes in body size spectra of benthic caridean shrimps (Decapoda: Caridea) and snails (Gastropoda) as response to seasonal variability. Revista De Biología Tropical, 64(1), 33–44. https://doi.org/10.15517/rbt.v64i1.18334

Abstract

Ecologists have been largely interested in the description and understanding of the power scaling relationships between body size and abundance of organisms. Many studies have focused on estimating the exponents of these functions across taxonomic groups and spatial scales, to draw inferences about the processes underlying this pattern. The exponents of these functions usually approximate -3/4 at geographical scales, but they deviate from this value when smaller spatial extensions are considered. This has led to propose that body size-abundance relationships at small spatial scales may reflect the impact of environmental changes. This study tests this hypothesis by examining body size spectra of benthic shrimps (Decapoda: Caridea) and snails (Gastropoda) in the Tamiahua lagoon, a brackish body water located in the Eastern coast of Mexico. We measured water quality parameters (dissolved oxygen, salinity, pH, water temperature, sediment organic matter and chemical oxygen demand) and sampled benthic macrofauna during three different climatic conditions of the year (cold, dry and rainy season). Given the small size of most individuals in the benthic macrofaunal samples, we used body volume, instead of weight, to estimate their body size. Body size-abundance relationships of both taxonomic groups were described by tabulating data from each season into base-2 logarithmic body size bins. In both taxonomic groups, observed frequencies per body size class in each season were standardized to yield densities (i.e., individuals/m3). Nonlinear regression analyses were separately performed for each taxonomic group at each season to assess whether body size spectra followed power scaling functions. Additionally, for each taxonomic group, multiple regression analyses were used to determine whether these relationships varied among seasons. Our results indicated that, while body size-abundance relationships in both taxonomic groups followed power functions, the parameters defining the shape of these relationships varied among seasons. These variations in the parameters of the body size-abundance relationships seems to be related to changes in the abundance of individuals within the different body size classes, which seems to follow the seasonal changes that occur in the environmental conditions of the lagoon. Thus, we propose that these body size-abundance relationships are influenced by the frequency and intensity of environmental changes affecting this ecosystem.

https://doi.org/10.15517/rbt.v64i1.18334
PDF
HTML

References

Álvarez, F., Villalobos, J. L., Rojas, Y., & Robles, R. (1999). Listas y comentarios sobre los crustaceos decapodos de Veracruz, Mexico. Anales del Instituto de Biología UNAM, Serie Zoología, 70, 1-27.

Antonio, E. S., Kasai, A., Ueno, M., Kurikawa, Y., Tsuchiya, K., Toyohara, H., Ishihi, Y., Yokoyama, H., & Yamashita, Y. (2010). Consumption of terrestrial organic matter by estuarine mollusks determined by analysis of their stable isotopes and cellulase activity. Estuarine, Coastal and Shelf Science, 86, 401-407.

Attrill, M. J., & Power, M. (2000). Effects on invertebrate populations of drought-induced changes in estuarine water quality. Marine Ecology Progress Series, 203, 133-143.

Barbone, E., Rosati, I., Pinna, M., & Basset, A. (2007). Taxonomic and dimensional structure of benthic macroinvertebrate guilds in the Margherita di Savoia Salt Pans (Italy). Transitional Waters Bulletin, 1, 21-31.

Basset, A., Sabetta, L., Sangiorgio, F., Pinna, M., Migoni, D., … Beqiraj, S. (2008). Biodiversity conservation in Mediterranean and Black Sea lagoons: a trait-oriented approach to benthic invertebrate guilds. Aquatic Conservation, Marine and Freshwater Ecosystems, 18, 4-15.

Basset, A., Sangiorgio, F., & Pinna, M. (2004). Monitoring with benthic macroinvertebrates: advantages and disadvantages of body size descriptors. Aquatic Conservation, 14, S43-S58.

Boix, D., Sala, J., Quintana, X. D., & Moreno-Amich, R. (2004). Succession of the animal community in a Mediterranean temporary pond. Journal of the North American Benthological Society, 23, 29-49.

Brown, J. H., Gillooly, F. J., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.

Brown, J. H., West, G. B., & Enquist, B. J. (2000). Scaling in biology: patterns and processes, causes and consequences. In J. H. Brown, & G. B. West (Eds.), Scaling in biology (pp. 1-24). New York: Oxford University Press.

Calder, W. A. (2000). Diversity and convergence: scaling for conservation. In J. H. Brown, & G. B. West (Eds.), Scaling in biology (pp. 297-323). New York: Oxford University Press.

Contreras, F. (1988). Las lagunas costeras mexicanas. Mexico City: Secretaría de Pesca.

Cruz, R. (1968). Geología marina de la Laguna de Tamiahua, Veracruz, México. Boletín del Instituto de Geología UNAM, 88, 1-47.

Cyr, H. (2000). Individual use and the allometry of population density. In J. H. Brown, & G. B. West (Eds.), Scaling in biology (pp. 267-296). New York: Oxford University Press.

Dinmore, T. A., & Jennings, A. (2004). Predicting abundance-body mass relationships in benthic infaunal communities. Marine Ecology Progress Series, 276, 289-292.

Drgas, A., Radziejewska, T., & Warzocha, J. (1998). Biomass size spectra of near-shore shallow-water benthic communities in the Gulf of Gdask (Southern Baltic Sea). Marine Ecology, 19, 209-228.

Gosselin, L., & Qian, P. (1997). Juvenile mortality in benthic marine invertebrates. Marine Ecology Progress Series, 146, 265-282.

Hildrew, A. G., Raffaelli, D. G., & Edmonds-Brown, R. (2007). Body size: the structure and function of aquatic ecosystems. New York: Cambridge University Press.

Kaariainen, J. I., & Bett, B. J. (2006). Evidence for benthic body size miniaturization in the deep sea. Journal of the Marine Biological Association United Kingdom, 86, 1339-1345.

Kneib, R. T. (1987). Predation risk and use of intertidal habitats by young fishes and shrimp. Ecology, 68, 379-386.

Kutner, M. H., Nachtsheim, C., Christopher, J., Neter, J., & Li, W. (2005). Applied linear models. New York: McGraw-Hill/Irwin.

Labra, F. A., Marquet, P. A., & Bozinovic, F. (2007). Scaling metabolic rate fluctuations. Proceedings of the National Academy of Sciences USA, 104, 10900-10903.

MacNab, B. K. (1990). The physiological significance of body size. In J. Damuth, & B. J. MacFadden (Eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications (pp. 11-24). New York: Cambridge University Press.

Mancinelli, G., Pinna, M., & Basset, A. (2008). Spatio-temporal variability of macrozoobenthos size structure of a coastal lagoon: the influence of spectrum resolution. Transitional Waters Bulletin, 2, 81-92.

Marini, G., Pinna, M., Basset, A., & Mancinelli, G. (2013). Estimation of benthic macroinvertebrates taxonomic diversity: testing the role of sampling effort in a Mediterranean transitional water ecosystem. Transitional Waters Bulletin, 7, 28-40.

Marquet, P. A., Navarrete, S. A., & Castilla, C. J. (1990). Scaling population density to body size in rocky intertidal communities. Science, 250, 1125-1127.

Marquet, P. A., Quiñones, R. A., Abades, S., Labra, F., Tognelli, M., Arim, M., & Rivadeneira, M. (2005). Scaling and power-laws in ecological systems. Journal of Experimental Biology, 208, 1749-1769.

McClain, C. R. (2004). Connecting species richness, abundance and body size in deep-sea gastropods. Global Ecology and Biogeography, 13, 327-334.

Mouillot, D., Spatharis, S., Reizopoulou, S., Laugier, T., Sabetta, L., Basset, A., & Chi, T. D. (2006). Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquatic Conservation, 16, 469-482.

Naranjo-García, E. (2003). Moluscos continentales de México: dulceacuícolas. Revista de Biología Tropical, 51, 495-505.

Naranjo-García, E., & Meza-Meneses, G. (2000). Moluscos. In G. S. de la Lanza-Espino, P. Hernández, & J. Carvajal (Eds.), Organismos Indicadores de la Calidad del Agua y de la Contaminación (pp. 309-404). Mexico City: Plaza y Valdéz.

Nee, S., Read, A. F., & Harvey, P. H. (1991). The relationship between abundance and body size in British birds. Nature, 351, 312-313.

Pechenik, J. A. (1999). On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series, 177, 269-297.

Peters, R. H. (1986). The ecological implications of body size. New York: Cambridge University Press.

Reguero, M., & García-Cuba, A. (1989). Moluscos de la Laguna de Alvarado, Veracruz: sistemática y ecología. Anales del Instituto de Ciencias del Mar y Limnología UNAM, 16, 279-306.

Reguero, M., García-Cuba, A., & Zúñiga, G. (1991). Moluscos de la Laguna Tampamachoco, Veracruz, México: sistemática y ecología. Anales del Instituto de Ciencias del Mar y Limnología UNAM, 18, 289-328.

Sangiorgio, F., Quintino, V., Rosati, I., Rodrigues, A. M., Pinna, M., & Basset, A. (2014). Macrofauna in Mediterranean and Black Sea transitional aquatic ecosystems: A comparative study of the benthic populations sampled by box corer and leaf bags. Ecological Indicators, 38, 159-169.

Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J., & Brown, J. H. (2004). The predominance of quarter-power scaling in biology. Functional Ecology, 18, 257-282.

Schmid, P. E., Tokeshi, M., & Schmid-Araya, J. M. (2000). Relation between population density and body size in stream communities. Science, 289, 1557-1560.

Schmid, P. E., Tokeshi, M., & Schmid-Araya, J. M. (2002). Scaling in stream communities. Proceedings of the Royal Society B, 269, 2587-2594.

Sheldon, R. W., Prakash, A., & Sutcliffe Jr., W. H. (1972). The size distribution of particles in the ocean. Limnology and Oceanography, 17, 327-340.

Siemann, E., Tilman, D., & Haarstad, J. (1996). Insect species diversity, abundance and body size relationships. Nature, 380, 704-706.

Sola, J. C. (1996). Population dynamics, reproduction, growth, and secondary production of the mud-snail Hydrobia ulvae (Pennant). Journal of Experimental Marine Biology and Ecology, 205, 49-62.

Viegas, I., Martinho, F., Neto, J., & Pardal, M. (2007). Population dynamics, distribution and secondary production of the brown shrimp Crangon crangon (L.) in a southern European estuary: latitudinal variations. Scientia Marina, 71, 451-460.

West, G. B., Brown, J. H., & Enquist, B. J. (2000). The origin of universal scaling laws in biology. In J. H. Brown, & G. B. West (Eds.), Scaling in biology (pp. 87-112). New York: Oxford University Press.

White, E. P., Ernest, S. K., Kerkhoff, A. J., & Enquist, B. J. (2007). Relationships between body size and abundance in ecology. Trends in Ecology & Evolution, 22, 323-330.

White, E. P., Enquist, B. J., & Green, J. L. (2008). On estimating the exponent of power-law frequency distributions. Ecology, 89, 905-912.

Zar, J. H. (2010). Biostatistical analysis. Upper Saddle River: Prentice Hall.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Revista de Biología Tropical

Downloads

Download data is not yet available.