Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
El color de la semilla afecta los requerimientos de luz y temperatura durante la germinación en dos especies de Lotus (Fabaceae) de los desiertos subtropicales árabes
PT 64-2 JUN 2016
PDF (English)
HTML (English)

Archivos suplementarios

Main document (English)
Response sheet (English)

Palabras clave

desert
germination
Lotus glinoides
Lotus halophilus
seed colour.
desierto
germinación
Lotus glinoides
Lotus halophilus
color de semillas.

Cómo citar

Bhatt, A., Gairola, S., & El-Keblawy, A. A. (2016). El color de la semilla afecta los requerimientos de luz y temperatura durante la germinación en dos especies de Lotus (Fabaceae) de los desiertos subtropicales árabes. Revista De Biología Tropical, 64(2), 483–492. https://doi.org/10.15517/rbt.v64i2.18575

Resumen

La heterogeneidad en las semillas se produce principalmente debido a factores fisiológicos, genéticos y ambientales, y esto podría afectar latencia de las semillas y la germinación. Por lo tanto, el objetivo de nuestro estudio fue evaluar el efecto del color de la semilla en el comportamiento de la germinación. Para ello, tanto los requisitos de luz y temperatura fueron evaluados en Lotus glinoides y Lotus halophilus (Fabaceae) desde los desiertos hiper-árida de los Emiratos Árabes Unidos. La germinación se evaluó en términos de nivel final de germinación (porcentaje) y la tasa de germinación, expresado por el índice de velocidad de germinación de Timson. L. glinoides produce semillas negro y de color amarillo, y L. halophilus produce semillas verdes y amarillas. Los diferentes lotes de semillas fueron germinadas en luz y oscuridad a diferentes temperaturas. Semillas amarillas de las dos especies alcanzaron significativamente menor germinación, en comparación con las semillas negras y verdes. No había requisitos específicos de luz o temperatura para la germinación de las semillas de dos colores de L. glinoides; el efecto de las interacciones entre color de la semilla y la luz y la temperatura de incubación, no fueron significativas en el porcentaje final de germinación. En L. halophilus, semillas verdes germinados significativamente más en la luz y la oscuridad a temperaturas más bajas (15/25 °C) ya la luz a temperaturas más altas (25/35 °C), en comparación con semillas amarillas. Semillas amarillas germinaron más rápido, en comparación con el negro a 15/25 °C en L. glinoides y en comparación con semillas verdes a 15/25 °C y 25/35 °C en L. halophilus. La variación del color de la semilla, al menos en L. halophilus, podría ser una estrategia de supervivencia que determinaría el momento de la germinación durante todo el año en el entorno del desierto impredecible.

https://doi.org/10.15517/rbt.v64i2.18575
PDF (English)
HTML (English)

Citas

Atak, M., Kaya, M. D., Kaya, G., Kaya, M., & Khawar, K. M. (2008). Dark green colored seeds increase the seed vigor and germination ability in dry green pea (Pisum sativum L.). Pakistan Journal of Botany, 40, 2345-2354.

Atanassova, B., Shtereva, L., Georgieva, Y., & Balatcheva, E. (2004). Study on seed coat morphology and histochemistry in three anthocyanin less mutants in tomato (Lycopersicon esculentum Mill.) in relation to their enhanced germination. Seed Science & Technology, 32, 79-90.

Atis, I., Atak, M., Can, E., & Mavi, K. (2011). Seed coat color effects on seed quality and salt tolerance of red clover (Trifolium pratense). International Journal of Agriculture and Biology, 13, 363-368.

Baskin, C. C., & Baskin, J. M. (1998). Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press.

Bewley, D. J., & Black, M. (1994). Seeds: Physiology of Development and Germination. New York: Plenum Press.

Bhatia, I. S., Nagpal, M. L., Singh, P., Kumar, S., Singh, N., Mahindra, A., & Parkash, O. (1979). Chemical nature of the pigment of the seed coat of guar (cluster bean, Cyamopsis tetragonolobus L. Taub). Journal of Agricultural and Food Chemistry, 27, 1274-1276.

Blumenthal, M. J., & McGraw, R. L. (1999). Lotus adaptation, use and management. In P. R. Beuselinck (Ed.), Trefoil: The Science and Technology of Lotus (pp. 97-119). Madison, Wisconsin: CSSA Special Publication Number 28.

Böer, B. (1997). An introduction to the climate of the United Arab Emirates. Journal of Arid Environments, 35, 3-16.

Bortnem, R., & Boe, A. (2003). Colour index for red clover seed. Crop Sciences, 43, 2279-2283.

Chachalis, D., & Smith, M. L. (2000). Imbibition behaviour of soybean (Glycine max (L.) Merrill) accessions with different testa characteristics. Seed Science & Technology, 28, 321-331.

Coste, F., Ney, B., & Crozat, Y. (2001). Seed development and seed physiological quality of field grown bean (Phaseolus vulgarisL.). Seed Science & Technology, 29, 121-136.

Coste, F., Raveneau, M. P., & Crozat, Y. (2005). Spectro-photometrical pod colour measurement: a non-destructive method for monitoring seed drying. Journal of Agricultural Science, 143, 183-192.

Debeaujon, I., Léon-Kloosterziel, K. M., & Koornneef, M. (2000). Influence of the testa on seed dormancy, germination and longevity in Arabidopsis. Plant Physiology, 122, 403-413.

Diaz, P., Borsani, O., & Monza, J. (2005). Lotus-Related Species and their Agronomic Importance. Netherlands: Springer.

Dickson, M. H., & Boettger, M. A. (1982). Heritability of semi-hard seed induced by low seed moisture in beans (Phaseolus vulgaris L.). Journal American Society for Horticultural Science, 107, 69-74.

Duran, J. M., & Retamal, N. (1989). Coat structure and regulation of dormancy in Sinapis arvensis L. seeds. Journal of Plant Physiology, 135, 218-222.

Elias, S. G., & Copeland, L. O. (2001). Physiological and harvest maturity of Canola in relation to seed quality. Agronomy Journal, 93, 1054-1058.

El-Keblawy, A. (2003). Effects of achene dimorphism on dormancy and progeny traits in the two ephemerals Hedypnois cretica and Crepis aspera (Asteracea). Canadian Journal of Botany, 81, 550-559.

El-Keblawy, A., & Lovett-Doust, J. (1998). Persistent, non-seed size maternal effects on the life history traits in the progeny generation in squash, Cucurbita pepo (Cucurbitaceae). New Phytologist, 140, 655-666.

El-Keblawy, A., Shaltout, K. H., Lovett-Doust, J., & Ramadan, A. (1997). Population dynamic of an Egyptian desert shrub, Thymelaea hirsuta. Canadian Journal of Botany, 75, 2027-2037.

El-Keblawy, A., Bhatt, A., & Gairola, S. (2013). Perianth Colour Affect Germination Behavior in the Wind Pollinated Salsola rubescens in the Arabian Deserts. Botany, 92, 69-75.

Fener, M. (1993). Enviromental influences of seed size and composition. Horticultural Reviews, 13, 183-21.

Ghazanfar, S. A., & Fisher, M. (1998). Vegetation of the Arabian Peninsula. Kluwer Academic Publisher. Geobotany, 25, 1-362.

Harper, J. L., & Ogden, J. (1970). The reproductive strategy of higher plants: I. The concept of strategy with special reference to Senecio vulgaris L. The Journal of Ecology, 58, 681-698.

Jacobsen, J. V., Gubler, F., & Chandler, P. M. (1995). Gibberellin action in germinated cereal grains. In P. J. Davies (Ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology (II Edition, pp. 246-271). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Jongbloed, M. J. (2003). The Comprehensive Guide to the Wild Flowers of the United Arab Emirates. Abu Dhabi: Environmental Research and Wildlife Development Agency.

Karssen, C. M., & Lacka, E. (1985). A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. Plant Growth Substances 1985 (pp. 315-323). Berlin Heidelberg: Springer.

Karssen, C. M., Brinkhorst-Van der Swan, D. L. C., Breekland, A. E., & Koornneef, M. (1983). Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta, 157, 158-165.

Kelly, K. M., Van Staden, J., & Bell, W. E. (1992). Seed coat structure and dormancy. Plant Growth Regulation, 11, 201-209.

Khan, M. A., & Ungar, I. A. (1986). Life history and population dynamics of Atriplex triangularis. Vegetatio, 66, 17-25.

Khan, M. A., & Ungar, I. A. (1998). Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions. American Journal of Botany, 84, 279-283.

Li, W., Liu, X., Khan, M. A., & Yamaguchi, S. (2005). The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. Journal of Plant Research, 118, 207-214.

Li, W. Q., Liu, X. J., Khan, M. A., Tsuji, W., & Tanaka, K. (2008). The effect of light, temperature and bracteoles on germination of polymorphic seeds of Atriplex centralasiatica under saline conditions. Seed Science and Technology, 36, 325-338.

Liu, W., Peffley, E. B., Powell, R. J., Auldb, D. L., & Hou, A. (2007). Association of seed coat color with seed water uptake, germination, and seed components in guar (Cyamopsis tetragonoloba (L.) Taub). Journal of Arid Environment, 70, 29-38.

Luzuriaga, A. L., Escudero, A., & Perez-Garcia, F. (2005). Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Research, 46, 163-174.

Matilla, A., Gallardo, M., & Puga-Hermiada, M. I. (2005). Structural, physiological and molecular aspects of heterogenity in seeds: a review. Seed Science Research, 15, 63-76.

Morris, E. C., Tieu, A., & Dixon, K. (2000). Seed coat dormancy in two species of Grevillea (Proteaceae). Annals of Botany, 86, 771-775.

Ochuodho, J. O., & Modi, A. T. (2010, September). Association of seed coat colour with germination of three wild mustard species with agronomic potential. Second RUFORUM Biennial Meeting. Entebbe, Uganda.

Ollerton, J., & Lack, A. (1996). Partial predispersal seed predation in Lotus corniculatus L. (Fabaceae). Seed Science Research, 6, 65-69.

Powell, A. A. (1989). The importance of genetically determined seed coat characteristics to seed quality in grain legumes. Annals of Botany, 63, 169-195.

Rolston, M. P. (1978). Water impermeable seed dormancy. The Botanical Review, 44, 365-396.

Sokoloff, D. D., & Lock, J. M. (2005). Loteae. In G. Lewis, B. Schrire, B. Mackinder, & M. Lock (Eds.), Legumes of the world (pp. 455-466). United Kingdom: BATH Press.

Souza, F. H. D. D., & Marcos-Filho, J. (2001). The seed coat as a modulator of seed-environment relationships in Fabaceae. Brazilian Journal of Botany, 24, 365-375.

Venable, D. L., Dyreson, E., & Morales, E. (1995). Population dynamic consequences and evolution of seed traits of Heterosperma pinnatum (Asteraceae). American Journal of Botany, 82, 410-420.

Volis, S., & Bohrer, G. (2013). Joint evolution of seed traits along an aridity gradient: seed size and dormancy are not two substitutable evolutionary traits in temporally heterogeneous environment. New Phytologist, 197, 655-667.

Werker, E. (1981). Seed dormancy as explained by the anatomy of embryo envelopes. Israel Journal of Botany, 29, 22-44.

White, C. N., Proebsting, W. M., Hedden, P., & Rivin, C. J. (2000). Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiology, 122, 1081-1088.

Xing, J., Cai, M., Chen, S., Chen, L., & Lan, H. (2013). Seed germination, plant growth and physiological responses of Salsola ikonnikovii to short-term NaCl stress. Plant Biosystem, 2, 285-297. doi:10.1080/11263504.2012.731017.

Zhang, X. K., Chen, J., Chen, L., Wang, H. Z., & Li, J. N. (2008). Imbibition behavior and flooding tolerance of rapeseed seed (Brassica napus L.) with different testa color. Genetic Resources and Crop Evolution, 55, 1175-1184.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2016 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.