Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Diversity and spatial genetic structure of a natural population of Theobroma speciosum (Malvaceae) in the Brazilian Amazon
PT 64-3 set 2016
HTML
PDF

Supplementary Files

Cover Letter

Keywords

Amazonia
genetic variability
microsatellite markers
cacauhy.
Cacauí
Amazonia
variabilidad genética
microsatélite.

How to Cite

Dardengo, J. de F. E., Rossi, A. A. B., Silva, B. M. da, Silva, I. V. da, Silva, C. J. da, & Sebbenn, A. M. (2016). Diversity and spatial genetic structure of a natural population of Theobroma speciosum (Malvaceae) in the Brazilian Amazon. Revista De Biología Tropical, 64(3), 1091–1099. https://doi.org/10.15517/rbt.v64i3.21461

Abstract

The quantification of genetic diversity and intrapopulation spatial genetic structure (SGS) of tree species are important aspects for in and ex situ conservation practices. In this study we seek to understand the importance of conservation areas by quantifying the genetic diversity and the spatial genetic structure of a natural population of Theobroma speciosum. Within this population, 49 adults and 51 subadults were genotyped for five microsatellite loci. The results showed that adults and subadults have similar levels of genetic diversity and inbreeding (adults: A= 10.4, Ae = 10.3, F= 0.68, subadults: A= 10.6, Ae= 10.6, F= 0.57). Genetic diversity was spatially structured within the population, and the results suggest that near-neighbor trees up to a distance of 70 m are likely related. SGS is likely the result of short-distance seed dispersal, the short-distance range of pollinators, and infrequent breaches of the self-incompatible mating system. Considering the high demographic density of the species and size of the study area, as well as the high average number of alleles per locus and the presence of rare alleles, we believe that the study population is an excellent resource for in situ genetic conservation of T. speciosum. The study area is also a useful resource for collecting germplasm for ex situ conservation and seed collection, either for breeding programs used in the restoration of degraded areas or forest improvement. 

https://doi.org/10.15517/rbt.v64i3.21461
HTML
PDF

References

Alves, R. M., Sebbenn, A. M., Artero, A. S., Clement, C., & Figueira, A. (2007). High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genetics Genomes, 3, 289-298.

André, T., Lemes, M. R., Grogan, J., & Gribel, R. (2007). Post-logging loss of genetic diversity in a mahogany (Swietenia macrophylla King, Meliaceae) population in Brazilian Amazonia, Forest Ecology and Management, 255, 340-345.

Balée, W. (1994). Footprints of the Forest – Ka’apor ethnobotany – the historical ecology of Plant Utilization by an Amazonian people. New York, NY, USA: Columbia University Press.

Bittencourt, J. V. M., & Sebbenn, A. M. (2009). Genetic effects of forest fragmentation in high-density Araucaria angustifolia populations in Southern Brazil. Tree Genetics and genomes, 5, 573-582.

Buchert, G. P., Rajora, O. P., & Hood, J. V. (1997). Effects of harvesting on genetic diversity in old-growth eastern white pine in Ontario, Canada. Conservation Biology, 11, 747-758.

Degen, B., Bandou, E., & Caron, H. (2004). Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity, 93, 585-591.

Dewalt, S. J., Bourdy, G., Michel, L. R. C., & Quenevo, C. (1999). Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Economic Botany, 53, 237-260.

Di Stasi, L. C., & Hiruma-Lima, C. A. (2002). Medicinal plants in the Amazon and Atlantic Forest. UNESP: São Paulo, SP, Brazil.

Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bulletin, 19, 11-15.

Gilabert-Escrivá, M. V., Gonçalves, L. A. G., Silva, C. R. S., & Figueira, A. (2002). Fatty acid and triacylglycerol composition and thermal behavior of fats from seeds of Brazilian Amazonian Theobroma species. Journal of Science Food Agriculture, 82, 1425-1431.

Goudet, J. (1995). Fstat. (Version 2.9.3.2.): a computer program to calculate F-statistics. Journal of Heredity, 86, 485-486.

Grivet, D., Robledo-Arnuncio, J. J., Smouse, P. E., & Sork, V. L. (2009). Relative contribution of contemporary pollen and seed dispersal to the effective parental size of seedling population of California valley oak (Quercus lobata, Ne´e). Molecular Ecology, doi: 10.1111/j.1365-294X.2009.04326.x.

Gusson, E., Sebbenn, A. M., & Kageyama, P. Y. (2005). Diversidade e estrutura genética espacial em populações de Eschweilera ovata (Cambess) Miers. Scientia Forestalis, 66, 123-135.

Hardy, O. J., Maggia, L., Bandou, E., Breyne, P., Caron, H., Chevallier, M. H., Doligez, A., Dutech, C., Kremer, A., Latouche-Hallé, C., Troispoux, V., Veron, V., & Degen, B. (2006). Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Molecular Ecology, 15, 559-571.

Hardy, O. J., & Vekemans, X. (2002). SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology, 21, 618-620.

Lanaud, C., Risterucci, A. M., Pieretti, I., Falque, M., Bouet, A., & Lagoda, P. J. L. (1999). Isolation and characterization of microsatellites in Theobroma cacao L. Molecular Ecology, 8, 2141-2143.

Lemes, M. R., Martiniano, T. M., Reis, V. M., Faria, C. P., & Gribel, R. (2007). Cross-amplification and characterization of microsatellite loci for three species of Theobroma (Sterculiaceae) from the Brazilian Amazon. Genetic Resource and Crop Evolution, 54, 1653-1657.

Loiselle, B. A., Sork, V. L., Nason, J., & Graham, C. (1995). Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany, 82, 1420-1425.

Motamayor, J. C., Risterucci, A. M., Lopez, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. (2002). Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity, 89, 308-386.

Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13, 1143-1155.

PNJU - PARQUE NACIONAL DO JURUENA. Available from <http://www.parquenacionaldojuruena.com.br>. Accessed on: 05 Jan. 2016.

Rajora, O. P., Rahman, M. H., Buchert, G. P., & Dancik, B. P. (2000). Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobes) in Ontario, Canada. Molecular Ecology, 9, 339-348.

Sebbenn, A. M., Carvalho, A. C. M., Freitas, M. L. M., Moraes, S. M. B., Gaino, A. P. S. C., Silva, J. M., Jolivet, C., & Moraes, M. L. T. (2010). Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity, 35, 1-12.

Selkoe, K. A., & Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9, 615-629.

Sereno, M. L., Albuquerque, P. S. B., Vencovsky, R., & Figueira, A. (2006). Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from the Brazilian Amazon evaluated by microsatellite markers. Conservation Genetics, 6, 13-24.

Silva, A. A. R., & Martins, M. B. (2004) Insetos polinizadores de Theobroma speciosum (Sterculiaceae) e conservação da biodiversidade. In Estação Científica Ferreira Penna - Dez anos de pesquisa na Amazônia (pp. 8-9), Belém.

Silva, B. M., Rossi, A. A. B., Dardengo, J. F. E., Carvalho, M. L. S., & Silva, C. J. (2013). Structure and spatial distribution patterns of two species of Theobroma in a permanent conservation park in the northern state of Mato Grosso. Enciclopédia Biosfera, 9, 2789-2795.

Silva, B. M., Rossi, A. A. B., Dardengo, J. F. E., Silva, C. R., Silva, I. V., Silva, M. L., & Silva, C. J. (2015). Genetic structure of natural populations of Theobroma in the Juruena National Park, Mato Grosso State, Brazil. Genetics and Molecular Research, 14, 10365-10375.

Silva, C. R. S., Albuquerque, P. S. B., Everdosa, F. R., Mota, J. W. S., Figueira, A., & Sebbenn, A. M. (2011). Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity, 106, 973-985.

Souza, M. S., & Venturieri, G. A, (2010). Floral biology of cacauhy (Theobroma speciosum – Malvaceae). Brazilian Archives of Biology and Technology, 53, 861-872.

Sunnucks, P. (2000). Efficient genetic markers for population biology. Trends Ecologic Evolution, 15, 199-203.

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Revista de Biología Tropical

Downloads

Download data is not yet available.