Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
¿Funciona el plan B? Estimación de rango de hogar a partir de datos almacenados en instrumentos a bordo de animales y los obtenidos a partir de telemetría satelital de GPS en el Amazonas colombiano
PT 64-4 dic 2016
PDF (English)
HTML (English)

Palabras clave

brownian bridges
Colombian Amazon
gps telemetry
home range
kernel density estimator
minimum convex polygon
Tapirus terrestris.
Puentes brownianos
Amazonía colombiana
telemetría
gps
rango de hogar
estimador de densidad de kernel
mínimo polígono convexo
Tapirus terrestris.

Cómo citar

Cabrera, J. A., Molina, E., González, T., & Armenteras, D. (2016). ¿Funciona el plan B? Estimación de rango de hogar a partir de datos almacenados en instrumentos a bordo de animales y los obtenidos a partir de telemetría satelital de GPS en el Amazonas colombiano. Revista De Biología Tropical, 64(4), 1441–1450. https://doi.org/10.15517/rbt.v64i4.22176

Resumen

La telemetría basada en los sistemas de geopocisionamiento global (GPS) hace posible recopilar gran cantidad de información a escalas muy finas, y trabajar con especies imposibles de estudiar en el pasado. Al trabajar con telemetría de GPS, la opción de guardar información en la memoria interna del instrumento puede ser más deseable que sólo tener acceso a la información enviada vía satélite, debido a la mayor cantidad de localizaciones disponibles para analizar. No obstante, la incertidumbre de recuperar el collar hace que las tecnología de trasmisión vía satélite deba ser tenida en cuenta. Diferencias entre las bases de datos almacenadas en el collar (SoB) y las trasmitidas vía satélite (IT), recolectadas de dos individuos de Tapir de tierras bajas (Tapirus terrestris), son consideradas, en términos de las áreas de los rangos de hogar calculados con cada uno y mediante el uso de tres metodologías diferentes: Mínimo Polígono Convexo (MCP), Estimador de Densidad de Kernel Fijo (KDE) y los Puentes Brownianos (BB). Las bases de datos SoB e IT son similares, con tasas de acierto de localizaciones que oscilan entre 63 % to 85 % y errores horizontales de 16 m y 17 m respectivamente. Dependiendo del número total de localizaciones disponibles para cada individuo, los rangos de hogar estimados muestran diferencias entre 2.7 % y 79.3 %, para el contorno del 50 % de probabilidades, y entre 9.9 % y 61.8 % para el contorno del 95 % de probabilidades. Estas diferencias implican variaciones en la coincidencia espacial de los rangos de hogar estimados. Concluimos que el uso de la información trasmitida vía satélite no es una buena opción para la estimación de rangos de hogar, si la programción de los collares no ha sido diseñada específicamente para tal fin. Sin embargo, las representaciones geográficas de los estimados a partir de las bases de datos IT pueden ser de gran ayuda para la identificación de áreas de uso, además de su utilidad para la localización y recuperación de collares tras su liberación de los individuos monitoreados y como una base de datos de soporte en caso de pérdida del collar.

https://doi.org/10.15517/rbt.v64i4.22176
PDF (English)
HTML (English)

Citas

Blake, S., Douglas-Hamilton, I., & Karesh, W. B. (2003). GPS telemetry of forest elephants in Central Africa: results of a preliminary study. African Journal of Ecology, 39, 178-186.

Bodmer, R., Puertas, P., & Fang, T. G. (2008). Co-Managing Wildlife in the Amazon and the Salvation of the Pacaya-Samiria National Reserve in Peru. In E. Duke (Ed.), Human Dimensions of Wildlife Management. Washington DC: Island Press.

Boyle, S. A., Lourenço, W. C., da Silva, L. R., & Smith, A. T. (2009). Home Range Estimates vary with Sample Size and Methods. Folia Primatologica, 80, 33-42.

Burt, W. H. (1943). Territoriality and Home Range Concepts as Applied to Mammals. Journal of Mammalogy, 24(3), 346-352.

Cabrera, J. A. (2012). Natural licks and people: Towards an understanding of the ecological and social dimensions of licks in the Colombian Amazon. Canterbury: School of Antrhopology and Conservation, University of Kent.

Cagnacci, F., Boitani, L., Powell, R. A., & Boyce, M. S. (2010). Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2157-2162.

Calenge, C. (2006). The package "adehabitat" for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516-519.

Castellanos, A. X. (2013). Iridium/GPS telemetry to study home range and population density of mountain tapirs in the rio Papallacta watershes, Ecuador. Tapir Conservation, 22(31), 20-25.

Fieberg, J., & Kochanny, C. O. (2005). Quantifying home-range overlap: The importance of the utilization distribution. Journal of Wildife Management, 69(4), 1346-1359.

Fragoso, J. M. (2003). Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees. Ecology, 84, 1998-2006.

Fragoso, J. M., & Huffman, J. M. (2000). Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir. Journal of Tropical Ecology, 16, 369-385.

Frair, J. L., Fieberg, J., Hebblewhite, M., Cagnacci, F., Decesare, N., & Pedrotti, L. (2010). Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2187-2200.

Hebblewhite, M., & Haydon, D. T. (2010). Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society B-Biological Sciences, 36, 2303-2312.

International Union for Conservation of Nature Red List of Threatened Species. Version 2015.2. . Downloaded on 03 July 2015.

Keuroghlian, A., & Eaton, D. P. (2009). Removal of palm fruits and ecosystem engineering in palm stands by white-lipped peccaries (Tayassu pecari) and other frugivores in an isolated Atlantic Forest fragment. Biodiversity and Conservation, 18, 1733-1750.

Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell, M. S., Gaillard, J. M., & Moorcroft, P. R. (2010). The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2221-2231.

Kochanny, C. O., Delgiudice, G. D., & Fieberg, J. (2009). Comparing Global Positioning System and very high frequency telemetry home ranges of white-tailed deer. Journal of Wildlife Management, 73(5), 779-787.

Lewis, J. S., Rachlow, J. L., Garton, E. O., & Vierling, L. A. (2007). Effects of habitat on GPS collar performance: using data screening to reduce location error. Journal of Applied Ecology, 44, 663-671.

Mattisson, J., Andrén, H., Persson, J., & Segerström, P. (2010). Effects of Species Behavior on Global Positioning System Collar Fix Rates. Journal of Wildlife Management, 743, 557-563.

Molina, E., León T. E., & Armenteras-Pascual, D. (2014). Characteristics of natural salt licks located in the Colombian Amazon foothills. Environmental Geochemistry Health, 36(1), 117-129.

Murcia, U. G., Huertas, C. M., Rodríguez, J. M., & Castellanos, H. O. A. (2010). Monitoreo de los bosques y otras coberturas de la Amazonia colombiana, datos del año 2007. Bogotá, D. C.: Instituto Amazónico de Investigaciones Científicas Sinchi.

Seaman, E. D., Millspaugh, J. J., Kernohan, B. J., Brundige, G. C., Raedeke, K. J., & Gitzen, R. A. (1999). Effects of sample size on kernel home range estimates. Journal of Wildlife Management, 63(2), 739-747.

Schuttler, S. G., Blake, S., & Eggert, L. S. (2012). Movement patters and spatial relationships among African forest elephants. Biotropica, 44(4), 445-448.

Telonics. (2013). GEN4 GPS Systems manual.

Tobler, M. W. (2009). New GPS technology improves fix success for large mammal collars in dense tropical forest. Journal of Tropical Ecology, 25, 217-221.

Tobler, M. W., Carrillo-Percastegui, S. E., & Powell, G. (2009). Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. Journal of Tropical Ecology, 25, 261-270.

Jung, T. S., & Kuba, K. (2015). Performance of GPS collars on free-ranging bison (Bison bison) in north-western Canada. Wildlife Research, 42, 315.

Tomkiewicz, S. M., Fuller, M. R., Kie, J. G., & Bates, K. K. (2010). Global positioning system and associated technologies in animal behaviour and ecological research. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2163-2176.

UNEP‐WCMC. (2012). CITES Trade: recent trends in international trade in Appendix II‐listed species (1996‐2010). Cambridge: UNEP‐WCMC.

Walter, W. D., Fischer, J. W., Baruch-Mordo, S., & Vercauteren, K. C. (2011). What Is the Proper Method to Delineate Home Range of an Animal Using Today’s Advanced GPS Telemetry Systems: The Initial Step (Paper 1375). USDA National Wildlife Research Center - Staff Publications.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2016 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.