Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Efecto borde en la distribución de líquenes y el contenido de clorofilas en fragmentos de Polylepis quadrijuga (Rosaceae) en el páramo de La Rusia (Boyacá-Colombia)
PT 64-4 dic 2016
PDF
HTML

Palabras clave

efecto borde
líquenes
Polylepis quadrijuga
humedad relativa
temperatura
radiación
clorofila.
edge effect
lichens
P. quadrijuga
relative humidity
temperature
radiation
chlorophyll.

Cómo citar

Pulido Herrera, K., & Ramos Montaño, C. (2016). Efecto borde en la distribución de líquenes y el contenido de clorofilas en fragmentos de Polylepis quadrijuga (Rosaceae) en el páramo de La Rusia (Boyacá-Colombia). Revista De Biología Tropical, 64(4), 1683–1697. https://doi.org/10.15517/rbt.v64i4.22735

Resumen

La fragmentación de los ecosistemas es uno de los fenómenos antrópicos de mayor impacto global, y el efecto borde provoca que solo el interior de los fragmentos conserve sus características bióticas y abióticas originales. Los líquenes son organismos especialmente susceptibles a la variabilidad ambiental, lo que podría ser útil para la bio-indicación del efecto borde. En este trabajo se evaluó el efecto borde en dos fragmentos de Polylepis quadrijuga en el Páramo de la Rusia (Boyacá-Colombia), para determinar si existe un efecto borde sobre la distribución de los líquenes asociados a P. quadrijuga y su contenido de clorofilas. Se utilizaron tres transectos de 70 m a través del gradiente matriz-borde-interior en cada fragmento. Se escogieron nueve forofitos por transecto para medir variables ambientales: radiación fotosintéticamente activa, humedad relativa y temperatura del aire, y variables biológicas: riqueza y cobertura de cada especie. Además, fueron elegidas las especies que estaban presentes en las tres zonas del gradiente para cuantificar el contenido de clorofilas a y b, y determinar si hay cambios en la relación de clorofilas a/b que podrían sugerir plasticidad fisiológica como respuesta al efecto borde. Nuestros resultados mostraron que el fragmento 2 tenía una mayor exposición al borde debido a su alta relación perímetro/área, lo que causa una homogenización ambiental y pérdida de biodiversidad con relación con el fragmento 1. En general, se encontraron 55 especies que se distribuyen diferencialmente en relación con los fragmentos y el gradiente matriz-borde-interior. El interior del fragmento 1 fue la zona más conservada, que alberga una composición diferente en más de un 40 % a la composición de cualquier otra zona. Se clasificaron los líquenes de acuerdo con sus hábitos: gelatinosos, fruticosos, costrosos o foliosos, pero no se encontró ninguna relación entre la distribución por hábito y el efecto borde. Seis especies de amplia distribución mostraron cambios en el contenido de clorofila a lo largo del gradiente matriz-borde-interior, lo que es una evidencia de la plasticidad fisiológica al efecto borde. También fue posible diferenciar entre especies con preferencia por ambientes de alta temperatura y especies con preferencia a lugares más húmedos y suficientemente irradiados. Se concluye que algunas especies podrían tener un importante potencial como bio-indicadores de la fragmentación en ambientes de páramo
https://doi.org/10.15517/rbt.v64i4.22735
PDF
HTML

Citas

Arellano, J. & Rangel, J. (2008). Patrones en la distribución de la vegetación en áreas de páramo de Colombia: heterogeneidad y dependencia espacial. Caldasia, 3, 355-411.

Barnes, J., Balaguer, L., Manrique, E., Elvira, S., & Davidson, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Enviromental and Experimental Botany, 32, 85-100.

Barrera, F. (2004). Estructura y función en bordes de bosques. Ecosistemas, 13(1), 67-77.

Bierregaard, R., & Gascon, C. (2001). History of a long term conservation project. En C. Gascon, T. Lovejoy, & R. Mesquita (Ed.), Lessons from Amazonia. The ecology and conservation of a fragmented forest (pp. 5-12). Michigan, USA: University Press.

Bierregaard, R., Lovejoy, T., Kapos, V., Dos Santos, A., & Hutchings, R. (1992). The biological dynamics of tropical rainforest fragments. A prospective comparision of fragments and continuous forest. Bioscience, 42, 859-866.

Brodo, I., Duran, S., & Sharnoff, S. (2001). Lichens of North America. Connecticut, USA: Yale University Press.

Brown, H., & Hooker, T. (1997). The significance of acidic lichen substances in the estimation of chlorophyll and phaeophytin in lichens. New Phytologist, 78, 617-624.

Bustamante, R. & Grez, A. (1995). Consecuencias ecológicas de la fragmentación de los bosques nativos. Ambiente y Desarrollo, 2, 58-63.

Calatayud, A., Sanz, M., Barreno, E., & Del Valle-Tascón, S. (1994). Ventajas de la utilización del dimetilsulfóxido en la determinación de clorofilas y feofitinas en líquenes. Stvdia Botanica, 13, 123-128.

Chaparro, M. & Aguirre, J. (2002). Hongos Liquenizados. Bogotá, Colombia: Universidad Nacional de Colombia.

Chen, J., Franklin, J., & Spies, T. (1992). Vegetation responses to edge environments in old-growth Douglas-fir forest. Ecological Applications, 2, 387-396.

Cuatrecasas, J. (1989). Aspectos de la vegetación natural en Colombia. Revista de la Academia Colombia de Ciencias Exactas, Físicas y Naturales, 10, 221-264.

Curran, P., Dungan, J., & Gholz, H. (1990). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology, 7, 33-48.

Demmig-Adams, B., Maguas, C., Adams, W., Meyer, A., Kilian, E., & Lange, E. (1990). Effect to high light on the efficiency of photochemical energy conversión in a variety of lichen species with green and blue.green phycobionts. Planta, 180, 400-409.

Didham, R., & Lawton, J. (1999). Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica, 31, 17-30.

Eberhard, S., Finazzi, G., & Wollman, F. (2008). The dynamics of photosynthesis. Annual Review of Genetics, 42, 463-515.

Esseen, P. A., & Renhorn, K. E. (1998). Edge effects on an epiphytic lichen in fragmented forests. Conservation Biology, 12(6), 1307-1317.

Etter, A., & Villa, A. (2000). Andean forests and framing systems in part of the Eastern Cordillera (Colombia). Mountain Research and Development, 20, 236-245.

Fagan, W., Cantrell, R., & Cosner, C. (1999). How habitat edges change species interactions. The American Naturalist, 153, 165-182.

Gauslaa, Y., Lie, M., Asbjørn, K., & Ohlson, M. (2006). Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forest with contrasting light climates. Oecologia, 147, 406-416.

Gauslaa, Y., & Solhaug, K. (1996). Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Functional Ecology, 10, 344-354.

Gunnar, J., & Moen, J. (1998). Patterns in species associations in plant communities: the importance of scale. Journal of Vegetation Science, 9, 327-332.

Hale, M. (1975). A revision of the lichen genus Hypotrachyna (Parmeliaceae) in Tropical America. Smithsonian Contributions to Botany, 25, 1-77.

Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 4-9.

Harper, K., MacDonald, S., Burton, P., Chen, J., Brosofske, K., Saunders, S., Euskirchen, E., Roberts, D., Jaiteh, M., & Esseen, E. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782.

Harris, L. (1988). Edge effects and conservation of biotic diversity. Conservation Biology, 2, 330-332.

Hawksworth, D. L., Iturriaga, T., & Crespo, A. (2005). Líquenes como bioindicadores inmediatos de contaminación y cambios medio-ambientales en los trópicos. Revista Iberoamericana de Micologia, 22, 71-82.

Heber, U., Bilger, W., & Shuvalov, V. (2006). Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. Journal of Experimental Botany, 57, 2993-3006.

Henriksson, E., & Pearson, L. (1981). Nitrogen fixation rate and chlorophyll content of the lichen Peltigera canina exposed to sulfur dioxide. American Journal of Botany, 68, 680-684.

Herrera, M., Philippe, P., & Nash, T. (1998). Pendulous species of Usnea from the temperatura forests in Mexico. The Bryologist, 101, 303-329.

Hofstede, R., Segarra, P., & Mena, P. (Eds.). (2003). Los Páramos del mundo: proyecto atlas mundial de los Páramos. Quito, Ecuador: Global Patland Initiative/NC-IUCN/EcoCiencia.

Holdridge, L. R. (2000) Ecología basada en zonas de vida. San José, Costa Rica: Instituto interamericano de cooperación para la Agricultura.

Hong, X., Vavilin, D., & Vermaas, W. (2001). Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 98, 14168-14173.

Jairus, K., Lõhmus, A., & Lõhmus P. (2009). Lichen acclimatization on retention trees: a conservation physiology lesson. Journal of Applied Ecology, 46, 930-936.

Johansson, O., Olofsson, J., Giesler, R., & Palmqvist, K. (2011). Lichen responses to nitrogen and phosphorus additions can be explained the different symbiont responses. New Phytologist, 1991, 795-805.

Jungbluth, P. (2006). A família Parmeliaceae (fungos liquenizados) em fragmentos de cerrados do estado de São Paulo (Tesis de Maestría). Instituto de Botãnica da Secretaria de Estado do Meio Ambiente, São Paulo, Brasil.

Kapos, V. (1989). Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology, 5, 173-185.

Kosugi, M., Miyake, H., Yamakawa, H., Shibata, Y., Miyazawa, A., Sugimura, T., Satoh, K., Itoh, S., & Kashino, Y. (2013). Arabitol provided by lichenous fungi enhances ability to dissipate excess light energy in a symbiotic green alga under desiccation. Plant Cell Physiology, 54(8), 1316-1325.

Kranner, I., Zorn, M., Turk, B., Wornik, S., Beckett, R., & Batoc, F. (2003). Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist, 160, 167-176.

Kruys, N., & Jonsson, B. (1997). Insular patterns of calicioid lichens in boreal old-growth forest-wetland mosaic. Ecography, 20, 605-613.

Larcher, W. (1995). Physiological plant ecology: Ecophysiology and stress physiology of functional groups. 3rd. Edition. Berlín and New York: Springer-Verlag.

Laurance, W., Ferreira, L., Rankin-de Merona, J., & Laurance, S. (1998). Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology, 79, 2032-2040.

Lücking, R., Rivas Plata, E., Chaves, J., Umaña, L., & Sipman, H. J. M. (2009). How many tropical lichens are there… really? Bibliotheca Lichenologica, 100, 399-418.

Matlack, G. (1993). Microenvironment variation within and among forest edge sites in the Eastern Unites State. Biological Conservation, 66, 185-194.

Melgarejo, L. M. (2010). Experimentos en fisiología vegetal. Bogotá, Colombia: Universidad Nacional de Colombia.

Moncada, B. (2012). El género Sticta (Schreb.) Ach. en Colombia: taxonomía, ecogeografía e importancia (Tesis de Doctorado). Universidad Nacional de Colombia, Bogotá, Colombia.

Montgomery, R. (2004). Effects of understory foliage on patterns of light attenuation near the forest floor. Biotropica, 36, 33-39.

Morales, J. A. & Estévez, J. V. (2006). El páramo: ¿ecosistema en vía de extinción? Revista Luna Azul, Universidad de Caldas, 22, 39-51.

Morales, M., Otero, J., Van der Hammen, T., Torres, A., Cadena, C., Pedraza, C., Rodríguez, N., Franco, C., Betancourth, J. C., Olaya, E., Posada, E., & Cárdenas, L. (2007). Atlas de páramos de Colombia. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Tree, 10, 58-62.

Nash, T. H. (2008). Lichen Biology. Second edition. United Kingdom, London: Cambridge University Press.

Nason, J., & Hamrick, J. (1997). Reproductive and genetic consequences of forest fragmentation: two cases studies of Neotropical canopy trees. Journal of Heredaty, 88, 264-276.

Nava, Y., Maass, M., Brones, O., & Méndez, I. (2007). Evaluación del efecto de borde sobre dos especies del bosque tropical caducifolio de Jalisco, México. Agrociencia, 41, 111-120.

Palacios, L., Velasco, M., Rivero, R., Villamil, J., & Rivera, N. (2005). Plan de manejo santuario de fauna y flora Guanentá Alto Río Fonce. Charalá, Santander, Colombia: Parques Nacionales Naturales de Colombia.

Palmqvist, K., Campbell, D., Ekblad, A., & Johansson, H. (1998). Photosynthetic capacity in relation to nitrogen content and its partitioning in lichens with diferente photobionts. Plant Cell Enviroment, 21, 361-372.

Paterson, D. R., Paterson, E. W., & Kenworthy, J. B. (1983). Physiological studies on temperate lichen species I.A mathematical model to predict assimilation in the field, based on laboratory responses. New Phytologist, 94, 605-618.

Pérez, A. & Watteijne, B. (2009). Estructura de una comunidad de líquenes y morfología del género Sticta (Stictaceae) en un gradiente altitudinal. Acta Biológica Colombiana, 14, 157-170.

Piccoto, M., & Tretiach, M. (2010). Photosynthesis in chlorolichens: the influence of the habitat light regime. Journal Plant Research, 123, 763-775.

Raggio, J. (2013). Fotosíntesis, crecimiento y resistencia a ambientes extremos en líquenes de regiones polares y alpinas (Tesis Doctoral Inédita). Universidad Complutense de Madrid, Madrid, España.

Ramos, C., Buitrago, S., Pulido, K., & Vanegas L. (2013). Variabilidad ambiental y respuestas fisiólogicas de Polylepis quadrijuga (Rosaceae) en un ambiente fragmentado en el Páramo de La Rusia (Colombia). Revista Biología Tropical, 61, 351-361.

Rangel, O. (2000). Colombia: Diversidad Biótica III: La región de la vida paramuna. Bogotá, Colombia: Universidad Nacional de Colombia.

Rangel, O. (2007). La alta montaña de Perijá: consideraciones finales. En O. Rangel. (Ed.), Colombia Diversidad Biótica V. La alta montaña de la serranía de Perijá (pp. 417-436). Bogotá, Colombia: Universidad Nacional de Colombia-Instituto de Ciencias Naturales-Corpocesar.

Renhorn, K., Esseen, P., Palmqvist, K., & Sundberg, B. (1997). Growth and vitality of epiphytic lichens I. Responses to microclimatic along a forest edge-interior gradient. Oecologia, 109, 1-9.

Rheault, H., Drapeau, P., Bergeron, Y., & Esseen, P. (2003). Edge effects on epiphytic lichens in managed black spruce forest of Eastern North America. Canadian Journal of Forest Research, 33, 23-32.

Ricketts, T. H. (2001). The matrix matters: effective isolation in fragmented landscapes. American Naturalist, 158, 87-99.

Rodríguez, J. M. (2010). Ecología segunda edición. Madrid, España: Ediciones Pirámide.

Santos, T. & Tellería, J. L. (2006). Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas, 15(2), 3-12.

Saunders, D., Hobbs, R., & Margules, C. (1991). Biological consequences of ecosystem fragmentation a review. Conservation Biology, 5, 118-132.

Shanker, D. (2005). Photosynthesis in plants under stressful conditions. En M. Pessaraklim. Handbook of photosynthesis. Second edition (pp. 717-737). New York, USA: CRC Press.

Sillett, S. (1994). Growth rates of two epiphytic cyanolichen species at the edge and in the interior of a 700-year-old Douglas-fir forest in the western Cascades of Oregon. Bryologist, 97, 321-324.

Sillett, S. (1995). Branch epiphyte assemblages in the forest interior and on the clearcut edge of a 700-year-old forest canopy in western Oregon. Bryologist, 98, 301-312.

Simijaca, D. (2011). Líquenes epífitos de Quercus humboldtii en el parquet natural municipal robledales de tipacoque (Boyacá-Colombia) (Tesis de pregrado). Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá.

Sipman, H. (1986). Notes on the lichen genus Everniastrum (Parmeliaceae). Mycotaxon, 26, 235-251.

Sipman, H. (1998). Revised key to Hypotrachyna (Parmeliaceae) in Tropical America. Recuperado de http://www.bgbm.org/sipman/keys/Neohypot.htm.

Sipman, H. (2005). Identification key and literatura guide to the genera of lichenized fungi (Lichens) in the Neoropics. Recuperado de http://www.bgbm.fu-berlin.de/sipman/keys/neokeyA.htm.

Sipman, H. & Aguirre, J. (1982). Contribución al conocimiento de los líquenes de Colombia I. Clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. Caldasia, 13, 603-634.

Sipman, H., Elix, J., & Nash, T. (2009). Hypotrachyna (Parmeliaceae, Luchenized fungi). New York, USA: The New York Botanical Garden Press.

Sipman, H., Hekking, W., & Aguirre, A. (2008). Checklist of lichenized and lichenicolous fungi from Colombia. Biblitheca José Jerónimo Triana, 20, 1-242.

SPSS, Inc. (2009). PASW Statistics for Windows. Version 18.0. Chicago.

StatSoft., Inc. (2004). Statistica (data analysis software system). Version 7.0.

Váczi, P., & Barták, M. (2006). Photosynthesis of lichen symbiotic alga Trebouxia erici as affected by irradiance and osmotic stress. Biologia Plantarum, 50, 257-264.

Van der Hammen, T. (2008). La cordillera oriental Colombiana, transecto Sumapaz. En J. Cramer (Ed.), Studies on Tropical Andean Ecosystems (pp. 1009). Berlín, Alemania: Ecoandes 7.

Van der Hammen, T., Pabón, J., Gutiérrez, H., & Alarcón, J. (2002). El cambio global y los ecosistemas de alta montaña de Colombia. En C. Castaño (Ed.), Páramos y ecosistemas altoandinos de Colombia en condición hotspot y global climatic tensor (pp. 163-209). Bogotá, Colombia: Ideam.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2016 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.