Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Divergent predation environment between two sister species of livebearing fishes (Cyprinodontiformes: Poeciliidae) predicts boldness, activity, and exploration behavior
PDF
HTML

Supplementary Files

Figure 1
Cover Letter

Keywords

Activity
behavioral divergence
boldness
Brachyrhaphis
exploration
predation environment
actividad
audacia
Brachyrhaphis
depredación ambiental
divergencia en el comportamiento
exploración

How to Cite

Money, D. A., Ingley, S. J., & Johnson, J. B. (2017). Divergent predation environment between two sister species of livebearing fishes (Cyprinodontiformes: Poeciliidae) predicts boldness, activity, and exploration behavior. Revista De Biología Tropical, 65(1), 267–277. https://doi.org/10.15517/rbt.v65i1.23861

Abstract

Predators can influence a variety of prey traits, including behavior. Traits such as boldness, activity rate, and tendency to explore can all be shaped by predation risk. Our study examines the effects of predation on these behaviors by considering a natural system in which two sister species of livebearing fishes, Brachyrhaphis roseni and B. terrabensis, experience divergent predation environments. In February of 2013, we collected fish in the Río Chiriquí Nuevo drainage, Chiriquí, Panama, and conducted behavioral assays. Using open-field behavioral assays, we evaluated both juveniles and adults, and males and females, to determine if there were differences in behavior between ontogenetic stages or between sexes. We assessed boldness as ‘time to emerge’ from a shelter into a novel environment, and subsequently measured activity and exploration within that novel environment. We predicted that B. roseni (a species that co-occurs with predators) would be more bold, more active, and more prone to explore, than B. terrabensis (a species that does not co-occur with predators). In total, we tested 17 juveniles, 21 adult males, and 20 adult females of B. roseni, and 19 juveniles, 19 adult males, and 18 adult females of B. terrabensis. We collected all animals from streams in Chiriquí, Panama in February 2013, and tested them following a short acclimation period to laboratory conditionsAs predicted, we found that predation environment was associated with several differences in behavior. Both adult and juvenile B. roseni were more active and more prone to explore than B. terrabensis. However, we found no differences in boldness in either adults or juveniles. We also found a significant interaction between ‘sex’ and ‘species’ as predictors of boldness and exploration, indicating that predation environment can affect behaviors of males and females differently in each species. Our work demonstrates the importance of considering sex and life history stage when evaluating the evolution of behavior.

https://doi.org/10.15517/rbt.v65i1.23861
PDF
HTML

References

Archard, G. A., & Braithwaite, V. A. (2011a). Increased exposure to predators increases both exploration and activity level in Brachyrhaphis episcopi. Journal of Fish Biology, 78(2), 593-601. doi:10.1111/j.1095-8649.2010.02880.x

Archard, G. A., & Braithwaite, V. A. (2011b). Variation in aggressive behaviour in the poeciliid fish Brachyrhaphis episcopi: population and sex differences. Behavioural Processes, 86(1), 52-57.

Archard, G. A., Earley, R. L., Hanninen, A. F., & Braithwaite, V. A. (2012). Correlated behaviour and stress physiology in fish exposed to different levels of predation pressure. Functional Ecology, 26(3), 637-645. doi:10.1111/j.1365-2435.2012.01968.x

Billman, E. J., Rasmussen, J. E., Creighton, J. C., Johnson, J. B., & Belk, M. C. (2014). A multivariate approach to the analysis of within lifetime variation in life history. Methods in Ecology and Evolution, 5(8), 797-805. doi:10.1111/2041-210x.12211

Brodin, T. (2009). Behavioral syndrome over the boundaries of life-carryovers from larvae to adult damselfly. Behavioral Ecology, 20, 30-37. doi: 10.1093/beheco/arn111.

Brown, C., & Braithwaite, V. A. (2004). Size matters: a test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Animal Behaviour, 68(6), 1325-1329.

Brown, C., Jones, F., & Braithwaite, V. (2005). In situ examination of boldness-shyness traits in the tropical poeciliid, Brachyraphis episcopi. Animal Behaviour, 70, 1003-1009. doi:10.1016/j.anbehav.2004.12.022

Brown, C., Jones, F., & Braithwaite, V. (2007). Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. Journal of Fish Biology, 71(6), 1590-1601.

Dzieweczynski, T. L., & Crovo, J. A. (2011). Shyness and boldness differences across contexts in juvenile three-spined stickleback Gasterosteus aculeatus from an anadromous population. Journal of Fish Biology, 79(3), 776-788. doi:10.1111/j.1095-8649.2011.03064.x

Foster, S. A. (1999). The geography of behaviour: an evolutionary perspective. Trends in Ecology & Evolution, 14(5), 190-195.

Foster, S. A., & Endler, J. A. (1999). Thoughts on geographic variation in behavior. In S. A. Foster, & J. A. Endler (Eds.), Geographic variation in behavior (pp. 287-305). New York: Oxford University Press.

Fraser, D. F., & Gilliam, J. F. (1987). Feeding under predation hazard-response of the guppy and hart rivulus from sites with contrasting predation hazard. Behavioral Ecology and Sociobiology, 21(4), 203-209. doi:10.1007/bf00292500

Gale, B. H., Johnson, J. B., Bruce Schaalje, G., & Belk, M. C. (2013). Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae). Ecology and Evolution, 3(2), 326-333. doi:10.1002/ece3.459

Harris, S., Ramnarine, I. W., Smith, H. G., & Pettersson, L. B. (2010). Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos, 119(11), 1711-1718.

Hassell, E. M. A., Meyers, P. J., Billman, E. J., Rasmussen, J. E., & Belk, M. C. (2012). Ontogeny and sex alter the effect of predation on body shape in a livebearing fish: sexual dimorphism, parallelism, and costs of reproduction. Ecology and Evolution, 2(7), 1738-1746. doi:10.1002/ece3.278

Ingley, S. J., Rehm, J., & Johnson, J. B. (2014). Size doesn't matter, sex does: a test for boldness in sister species of Brachyrhaphis fishes. Ecology and Evolution, 4(22), 4361-4369. doi:10.1002/ece3.1304

Ingley, S., Billman, E., Hancock, C., & Johnson, J. (2014a). Repeated geographic divergence in behavior: a case study employing phenotypic trajectory analyses. Behavioral Ecology and Sociobiology, 68(10), 1577-1587. doi:10.1007/s00265-014-1767-y

Ingley, S. J., Billman, E. J., Belk, M. C., & Johnson, J. B. (2014b). Morphological Divergence Driven by Predation Environment within and between Species of Brachyrhaphis Fishes. Plos One, 9(2). doi:10.1371/journal.pone.0090274

Ingley, S. J., Reina, R. G., Bermingham, E., & Johnson, J. B. (2015). Phylogenetic analyses provide insights into the historical biogeography and evolution of Brachyrhaphis fishes. Molecular Phylogenetics & Evolution 89, 104-114. doi:http://dx.doi.org/10.1016/j.ympev.2015.04.013.

Ingley, S. J., & Johnson, J. B. (2016a). Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence. Evolution, 70, 600-616. doi: 10.1111/evo.12872

Ingley, S. J., & Johnson, J. B. (2016b). Selection is stronger in early-versus-late stages of divergence in a Neotropical livebearing fish. Biology Letters, 12(3). doi:10.1098/rsbl.2015.1022

Johnson, J. B. (2002). Divergent life histories among populations of the fish Brachyrhaphis rhabdophora: detecting putative agents of selection by candidate model analysis. Oikos, 96(1), 82-91. doi:10.1034/j.1600-0706.2002.960109.x

Johnson, J. B., & Belk, M. C. (2001). Predation environment predicts divergent life-history phenotypes among populations of the livebearing fish Brachyrhaphis rhabdophora. Oecologia, 126(1), 142-149.

Johnson, J. B., & Zuniga-Vega, J. J. (2009). Differential mortality drives life-history evolution and population dynamics in the fish Brachyrhaphis rhabdophora. Ecology, 90(8), 2243-2252. doi:10.1890/07-1672.1

Kelley, J. L., & Magurran, A. E. (2003). Effects of relaxed predation pressure on visual predator recognition in the guppy. Behavioral Ecology and Sociobiology, 54, 225-232.

Kokko, H., & Rankin, D. J. (2006). Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philosophical Transactions of the Royal Society, 361, 319-334.

Magurran, A. E., Seghers, B. H., Carvalho, G. R., & Shaw, P. W. (1992). Behavioral consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of antipredator behavior in the wild. Proceedings of the Royal Society of London B, 248, 117-122.

Magnhagen, C., Hellstrom, G., Borcherding, J., & Heynen, M. (2012). Boldness in two perch populations-long-term differences and the effect of predation pressure. Journal of Animal Ecology, 81(6), 1311-1318. doi:10.1111/j.1365-2656.2012.02007.x

Ottoni, E. B. (2000). EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behavior Research Methods, Instruments, & Computers, 32(3), 446-449.

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Retrieved from http://www.R-project.org

Reznick, D., & Endler, J. A. (1982). The impact of predation on life-history evolution in trinidadian guppies (Poecilia reticulata). Evolution, 36(1), 160-177. doi:10.2307/2407978

Riesch, R., Martin, R. A., & Langerhans, R. B. (2013). Predation's Role in Life-History Evolution of a Livebearing Fish and a Test of the Trexler-DeAngelis Model of Maternal Provisioning. American Naturalist, 181(1), 78-93. doi:10.1086/668597

Roff, D. A. (1992). Evolution of life histories: theory and analysis. Springer Science & Business Media.

Rowe, M., Pierson, K. L., & McGraw, K. J. (2015). Exploratory behavior is associated with plasma carotenoid accumulation in two congeneric species of waterfowl. Behavioural Processes, 115, 181-190. doi:10.1016/j.beproc.2015.04.008

Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.

Seghers, B. H. (1974). Schooling Behavior in the Guppy (Poecilia reticulata): An Evolutionary Response to Predation. Evolution, 28, 486-489.

Simcox, H., Colegrave, N., Heenan, A., Howard, C., & Braithwaite, V. A. (2005). Context-dependent male mating preferences for unfamiliar females. Animal Behaviour, 70, 1429-1437. doi:10.1016/j.anbehav.2005.04.003

Smith, B. R., & Blumstein, D. T. (2010). Behavioral types as predictors of survival in Trinidadian guppies (Poecilia reticulata). Behavioral Ecology, 21(5), 919-926. doi:10.1093/beheco/arq084

Stamps, J. A. (2007). Growth-mortality tradeoffs and 'personality traits' in animals. Ecology Letters, 10(5), 355-363. doi:10.1111/j.1461-0248.2007.01034.x

Wesner, J. S., Billman, E. J., Meier, A., & Belk, M. C. (2011). Morphological convergence during pregnancy among predator and nonpredator populations of the livebearing fish Brachyrhaphis rhabdophora (Teleostei: Poeciliidae). Biological Journal of the Linnean Society, 104(2), 386-392. doi:10.1111/j.1095-8312.2011.01715.x

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.