Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Variaciones adaptativas en la talla de la megafauna bentónica de fondos blandos tropicales en función de parámetros bióticos y abióticos
PDF
HTML

Palabras clave

body size
predictor variables
benthic megafauna
tropical soft-bottoms
Colombian Caribbean Sea
talla
variables predictivas
megafauna bentónica
fondos blandos tropicales
Caribe colombiano

Cómo citar

Gómez, L. A., & García, C. B. (2017). Variaciones adaptativas en la talla de la megafauna bentónica de fondos blandos tropicales en función de parámetros bióticos y abióticos. Revista De Biología Tropical, 65(3), 1002–1021. https://doi.org/10.15517/rbt.v65i3.25579

Resumen

Entender y predecir variaciones en el tamaño de los invertebrados megabentónicos sigue siendo un desafío importante en macroecología marina. Este estudio se realizó para identificar tendencias de cambio en la talla de la megafauna bentónica de fondos sedimentarios tropicales y conocer la influencia de variables que pueden determinar el tamaño de estos organismos, evaluando hipótesis y paradigmas ecológicos de mar profundo originados en zonas subtropicales y templadas. El área de estudio abarcó toda la plataforma continental del Caribe colombiano. Los ejemplares se recolectaron en 1998, 2001 y 2005 con red demersal semi-globo, entre 10 y 500 m de profundidad. Se seleccionaron las especies mejor representadas: Eudolium crosseanum, Cosmioconcha nitens, Nuculana acuta (moluscos), Astropecten alligator, Brissopsis atlantica, B. elongata (equinodermos), Anasimus latus, Chasmocarcinus cylindricus y Achelous spinicarpus (crustáceos). Para detectar tendencias significativas de cambio de tamaño, e inferir la influencia de variables bióticas y ambientales, se emplearon modelos aditivos generalizados, donde la talla fue la variable respuesta y las variables predictivas fueron: profundidad, temperatura, densidad intraespecífica e interespecífica, riqueza, latitud y longitud. Se midieron 7 000 ejemplares en total. Seis especies presentaron un incremento de la talla con el aumento de la profundidad y la disminución de la temperatura. Dichas especies abarcaron ámbitos batimétricos que superaron los 10 °C de diferencia entre zonas someras y profundas. Geográficamente se presentó una marcada disminución de tallas en el área de influencia de la desembocadura del río Magdalena, debida posiblemente a los fuertes cambios físicosquímicos que este río genera, principalmente porque es la zona con menos productividad primaria planctónica de toda el área de estudio. Hacia el norte de la desembocadura del río Magdalena se presentó un notorio aumento de tamaños entre los (74°W - 71°W Lon - 11°N - 13°N Lat), que puede deberse a la surgencia que se presenta en el norte del Caribe colombiano. La relación entre la densidad de individuos y la talla no fue clara. Sin embargo cinco especies mostraron una relación inversa con la densidad intraespecífica, y tres con la interespecífica. Temperatura y profundidad fueron las variables que mejor explicaron los cambios de talla detectados. La mayoría de especies presentaron un aumento de dimensiones corporales con la disminución de la temperatura en el perfil batimétrico. La tendencia al aumento de tallas con la profundidad es contraria a lo indicado por los modelos teóricos de talla óptima (pero acorde con algunos estudios más recientes), que predicen un decrecimiento del tamaño de los organismos con el incremento de la profundidad, debido a la disminución de nutrientes hacia zonas profundas del océano. Es posible que el aumento de tamaño sea una estrategia adaptativa para la maximización de la energía, como ocurre con muchos organismos en las porciones más frías de su ámbito de distribución. Futuros estudios en el Caribe deberían examinar variaciones en la talla de la megafauna bentónica en zonas más profundas (más de 500 m), donde la temperatura varía menos, razón por la cual otros factores pueden ser más importantes para determinar el tamaño de estos organismos.

https://doi.org/10.15517/rbt.v65i3.25579
PDF
HTML

Citas

Abele, L. G. (1974). Species diversity of decapod crustaceans in marine habitats. Ecology, 55(1), 156-161. doi.org/10.2307/1934629

Álvarez-León, L., Aguilera-Quiñones, J., Andrade-Amaya, C. & Novak, P. (1995). Caracterización general de la zona de surgencia en La Guajira colombiana. Revista de la Academia Colombiana de Ciencias Físicas y Naturales, 19(75), 679-694.

Andrade, C., & Barton, E. (2005). The Guajira upwelling system. Continental Shelf Research, 25, 1003-1022. doi:10.1016/j.csr.2004.12.012

Angilletta, M., & Dunham, A. (2003). The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. American Naturalist, 162(3), 332-342.

Arcos-1, ISA, & CIOH. (2000). Estudio de impacto ambiental del proyecto de cable submarino de fibra óptica ARCOS-1. EIA. Informe técnico. CIHO, Cartagena, Colombia.

Atkinson, D. (1994). Temperature and organism size-a biological law for ectotherms. Advances in Ecological Research, 25, 1-58. doi:10.1016/S0065-2504(08)60212-3

Atkinson, D., & Sibly, R. (1997). Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution, 12, 235-239. doi:10.1016/S0169-5347(97)01058-6

Berkenbusch, K., Probert, P. K., & Nodder, S. D. (2011). Comparative biomass of sediment benthos across a depth transect, Chatham Rise, Southwest Pacific Ocean. Marine Ecology Progress Series, 425, 79-90.

Blackburn, T., & Gaston, K. (1994). Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution, 9, 471-474. doi: 10.1016/0169-5347(94)90311-5

Blanco, J. (1988). Las variaciones ambientales estacionales en las aguas costeras y su importancia para la pesca en la región de Santa Marta, Caribe colombiano (Tesis de Maestría). Universidad Nacional de Colombia, Bogotá.

Bula, G. (1977). Algas marinas bénticas indicadoras de un área afectada por aguas de surgencia frente a la costa Caribe de Colombia. Anales del Instituto de Investigaciones Marinas Punta Betín, 9, 45-71.

Childress, J. J., & Thuesen, E. V. (1993). Effects of hydrostatic pressure on metabolic rates of six species of deep-sea gelatinous zooplankton. Limnology and Oceanography, 38(3), 665-670. doi: 10.4319/lo.1993.38.3.0665

Criales-Hernández, I. M., García, C. B., & Wolf, M. (2006). Flujos de biomasa y estructura de un ecosistema de surgencia tropical en La Guajira, Caribe colombiano. Revista de Biología Tropical, 54(4), 1257-1282.

Danovaro, R., Snelgrove, P. V., & Tyler, P. (2014). Challenging the paradigms of deep-sea ecology. Trends in Ecology & Evolution, 29(8), 465-475. doi.org/10.1016/j.tree.2014.06.002

Durden, J. M., Bett, B. J., Jones, D. O., Huvenne, V. A., & Ruhl, H. A. (2015). Abyssal hills – hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Progress in Oceanography, 137, 209-218.

Escobar-Briones, E., & Alvarez, F. (2002). Modern approaches to the study of Crustacea. New York: Springer Science.

Fierro, M. A. (2004). Estudio de los principales aspectos biológicos y de distribución de las especies dominantes de Agononida, Munida y Munidopsis en el Caribe colombiano (Crustacea: Decapoda: Galatheidae) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.

Gage, J. D., & Tyler, P. A. (1991). Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge: Cambridge University Press.

Hardy, S. M., Smith, C. R., & Thurnherr, A. M. (2015). Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test. Proceedings of the Royal Society B, 282, 20150193.

Hoey, G. V., Degraer, S., & Vincx, M. (2004). Macrobenthic community structure of soft-bottom sediments at the Belgian continental shelf. Estuarine, Costal and Shelf Science, 59, 599-613. doi:10.1016/j.ecss.2003.11.005

Instituto de Investigaciones Marinas y Costeras (Invemar). (2000). Informe final del proyecto caracterización de la macrofauna del Caribe colombiano. Fase 1: Epifauna de la franja superíor del talud continental (150-450 m). Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Instituto de Investigaciones Marinas y Costeras (Invemar). (2002a). Informe del estado de los ambientes marinos y costeros de Colombia: Año 2002. Serie de publicaciones periódicas No. 8. Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Invemar. (2002b). Informe final del proyecto caracterización y catalogación de la macrofauna marina del Caribe colombiano, Fase 2. Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Invemar & Corpoguajira. (2006). Informe final del proyecto caracterización de la zona costera del departamento de La Guajira: una aproximación para su manejo integrado. Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Jensen, P. (1988). Nematode assemblages in the deep-sea benthos of the Norwegian Sea. Deep-Sea Research, 35, 1173-1184.

Lampitt, R. S., Billett, D. S., & Rice, A. L. (1986). Biomass of the invertebrate megabenthos from 500 to 4100 m in the northeast Atlantic Ocean. Marine Biology, 93, 69-81. doi: 10.1007/BF00428656

Lavaleye, M. S., Duineveld, G. C., Berghuis, E. M., Kok, A., & Witbaard, R. A. (2002). Comparison between the megafauna communities on the N.W. Iberian and Celtic continental margins-effects of coastal upwelling? Progress in Oceanography, 52, 459-476. doi:10.1016/S0079-6611(02)00019-8

Leduc, D., Pilditch, C. A., & Nodder, S. D. (2016). Partitioning the contributions of mega-, macro-and meiofauna to benthic metabolism on the upper continental slope of New Zealand: Potential links with environmental factor sand trawling intensity. Deep-Sea Research I, 108, 1-12. doi.org/10.1016/j.dsr.2015.12.003

Mahaut, M. L., Sibuet, M., & Shirayama, Y. (1995). Weight-dependent respiration rates in deep-sea organisms. Deep-Sea Research, 42, 1575-1582. doi: 10.1016/0967-0637(95)00070-M

Marcus, N. H. (1983). Phenotypic variability in echinoderms. En M. Jangoux & J. M. Lawrence (Eds.), Echinoderm Studies (pp. 18-32). Rotterdam: A. A. Balkema.

Márquez, G. (1982). Los sistemas ecológicos marinos del sector adyacente a Santa Marta, Caribe colombiano I: generalidades. Ecología Tropical, 2(1), 5-13.

May, R. M. (1988). How many species are there on the earth? Science, 241 (4872), 1441-1449. doi: 10.2307/1702670

Mcclain, C. R., Rex, M. A., & Etter, R. J. (2009). Patterns in deep-sea macroecology. En J. D. Witman & R. Kaustuv (Eds), Marine macroecology (pp. 65-100). Londres: The University of Chicago Press.

McMahon, T. (1973). Size and shape in biology. Science, 179, 1201-1204. doi: 10.2307/1735749

Molina, A., Pelgrain, A., Suzunaga, J., & Giraldo, L. (1996). Comportamiento de la dinámica marina en el sector costero entre Galerazamba y Cartagena. Boletín Cientifico CIOH, 17, 73-78.

O’Dea, A., Rodríguez, F., & Romero, T. (2007). Response of zooid size in Cupuladria exfragminis (Bryozoa) to simulated upwelling temperatures. Marine Ecology, 28, 1-9. doi:10.1111/j.1439-0485.2006.00144.x

Okonski, S. L., & Martin, L. W. (1977). Materiales didácticos para la capacitación en tecnología de artes y métodos de pesca. Contribución al estudio de las pesquerías de México. México: Food and Agriculture Organization (FAO).

Olabarria, C., & Thurston, M. H. (2003). Latitudinal and bathymetric trends in body size of the deep-sea gastropod (King) Troschelia berniciensis. Marine Biology, 143, 723-730. doi: 10.1007/s00227-003-1116-6

Paine, R. T. (1976). Size-limited predation: an observational and experimental approach with the Pisaster-Mytilus interaction. Ecology, 57, 858-73. doi.org/10.2307/1941053

Parsons, T. R., Takahashi, M., & Hargrave, B. (1977). Biological Oceanographic Processes. Oxford: Pergamon Press.

Peters, R. H. (1983). The ecological implications of body size. Cambridge: Cambridge University Press.

Pfannkuche, O. (1985). The deep-sea meiofauna of the Porcupine Seabright and abyssal plain (N.E. Atlantic): population structure, distribution, standing stocks. Oceanologica Acta, 8, 343-353.

Polloni, P., Haedrich, R., Rowe, G., & Clifford, C. H. (1979). The size-depth relationship in deep ocean animals. Internationale Reveu der Gesamten Hydrobiologie, 64, 39-46. doi: 10.1002/iroh.19790640103

Reuman, D. C., & Cohen, J. E. (2004). Trophic links’ length and slope in the Tuesday Lake food web with species’ body mass and numerical abundance. Journal of Animal Ecology, 73, 852-866. doi: 10.1111/j.0021-8790.2004.00856.x

Rex, M. A., & Etter, R. J. (1998). Bathymetric patterns of body size: implications for deep-sea biodiversity. Deep-Sea Research II, 45, 103-127.

Rex, M. A., Etter, R. J., Clain, A. J., & Hill, M. S. (1999). Bathymetric patterns of body size in deep-sea gastropods. Evolution, 53(4), 1298-1301. doi: 10.2307/2640833

Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, J. C., Johnson, N. A., … & Avery, R. (2006). Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series, 317, 1-8.

Sanders, H. L., & Hessler, R. (1969). Ecology of the deep-sea benthos. Science, 163, 1419-1424. doi: 10.1126/science.163.3874.1419

Sebens, K. P. (1982). The limits to indeterminate growth: An optimal size model applied to passive suspension feeders. Ecology, 63, 209-222. doi.org/10.2307/1937045

Sebens, K. P. (1987). The ecology of indeterminate growth in animals. Annual Review of Ecology Evolution and Systematics, 18, 371-407.

Soetaert, K., & Heip, C. (1989). The size of nematode assemblages along a Mediterranean deep-sea transect. Deep-Sea Research, 36A, 93-102. doi:10.1016/0198-0149(89)90020-4

Soetaert, K., Franco, M., Lampadaríou, N., Muthumbi, A., Steyaert, M., Vandepitte L., … & Vanaverbeke, J. (2009). Factors affecting nematode biomass, length and width from the shelf to the deep sea. Marine Ecology Progress Series, 392, 123-132. doi: 10.3354/meps08202

Sturm, C. F., Pearce, T. A., & Valdés, A. (2007). The Mollusks: a guide to their study, collection, and preservation. Middletown: American Library Association Choice.

Sutherland, J. P. (1970). Dynamics of high and low populations of the limpet, Acmaea scabra (Gould). Ecological Monographs, 40, 169-188. doi.org/10.2307/1942294

Tecchio, S., Ramírez-Llodra, E., Sardà, F., Company, J. B., Palomera, I., Mechó, A., Pedrosa-Pàmies, R., & Sanchez-Vidal, A. (2011). Drivers of deep Mediterranean megabenthos communities along longitudinal and bathymetric gradients. Marine Ecology Progress Series, 439, 181-192. doi: 10.3354/meps09333

Thiel, H. (1975). The size structure of the deep-sea benthos. Internationale Reveu der Gesamten Hydrobiologie, 60, 575-606.

Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S., & Wilke, R. J. (1989). Meiobenthos of the Hatteras abyssal plain and Puerto Rico Trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep-Sea Research, 18, 941-57. doi:10.1016/0198-0149(89)90058-7

Van der Grient, J. M., & Rogers, A. D. (2015). Body size versus depth: regional and taxonomical variation in deep-sea meio- and macrofaunal organisms. Advances in Marine Biology, 71, 71-99. doi.org/10.1016/bs.amb.2015.07.002

Venables, W. N., & Dichmont, C. M. (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research, 70, 319-337. doi:10.1016/j.fishres.2004.08.011

Warwick, R. M., & Clarke, K. R. (1996). Relationships between body-size, species abundance and diversity in marine benthic assemblages: facts or artefacts? Journal of Experimental Marine Biology and Ecology, 202, 63-71. doi:10.1016/0022-0981(96)00031-7

Webb, T. J. (2012). Marine and terrestrial ecology: unifying concepts, revealing differences. Trends in Ecology and Evolution, 27(10) 535-541. doi.org/10.1016/j.tree.2012.06.002

Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends in Ecology and Evolution, 20(7), 1-8. doi.org/10.1016/j.tree.2005.04.005

Zulliger, D., & Lessios, H. A. (2010). Phylogenetic relationships in the genus Astropecten Gray (Paxillosida: Astropectinidae) on a global scale: molecular evidence for morphological convergence, species-complexes and possible cryptic speciation. Zootaxa, 2504, 1-19.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.