Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Adaptive variation in size of tropical soft bottom benthic megafauna related to biotic and abiotic factors
PDF (Español (España))
HTML (Español (España))

Keywords

body size
predictor variables
benthic megafauna
tropical soft-bottoms
Colombian Caribbean Sea
talla
variables predictivas
megafauna bentónica
fondos blandos tropicales
Caribe colombiano

How to Cite

Gómez, L. A., & García, C. B. (2017). Adaptive variation in size of tropical soft bottom benthic megafauna related to biotic and abiotic factors. Revista De Biología Tropical, 65(3), 1002–1021. https://doi.org/10.15517/rbt.v65i3.25579

Abstract

Understanding and predicting adaptations in body size of megabenthic invertebrates remains a major challenge in marine macroecology. This study was conducted in order to investigate size variations of benthic megafauna in the tropics and to identify the effect of biotic and abiotic factors that may produce changes to these organisms, testing unresolved hypothesis and paradigms of deep sea ecology from subtropical and temperate areas. The study area covered the continental shelf of the Colombian Caribbean. The samples were collected during 1998, 2001 and 2005, using semi-globe demersal net for a water depth of 10 to 500 m. The most common species were selected for further study: Eudolium crosseanum, Cosmioconcha nitens, Nuculana acuta (mollusks), Astropecten alligator, Brissopsis atlantica, B. elongata (equinoderms), Anasimus latus, Chasmocarcinus cylindricus and Achelous spinicarpus (crustaceans). Generalized Additive Models were used to detect significant changes in size and to infer the effects of biotic and environmental factors on organisms’ size. The dependent variable was size and the predicting model variables were depth, temperature, intraspecific density, interspecific density, richness, latitude, and longitude. A total of 7 000 individuals were measured. Six species showed an increase in body size towards deeper and colder sites. These species inhabit shallow and deep environments that exceed a variation in temperature of 10 °C. There was a remarkable size reduction in areas affected by the Magdalena River, possibly due to major physicochemical changes caused by the river. This region has the lowest planktonic primary productivity within the study area. An increase in sizes was observed north of the Magdalena River (long 74°W - 71°W & lat of 11°N - 13°N), which may be attributable to the coastal upwelling occurring in this part of Colombia. The relationship between the density of benthic organisms and size was not clear. However, five species showed an inverse relation with intraspecific density and three with interspecific density. Temperature and depth were the variables that best explained the variations in size. Most of the studied species showed an increase in body size when temperature dropped along the bathymetric range. The trend of increasing size in deeper zones is contrary to the prediction of the optimal size theoretical model (but consistent with recent studies), which indicates a reduction in organisms’ size in the deep sea, due to food limitation with increasing depth. It is possible that this increase in size is an adaptation to maximize energy, which is frequently observed in the coldest habitats of several species. Future studies in Caribbean should examine variations in size of benthic megafauna towards deeper zones (more than 500 m), were temperature is less variable and then other factors can play a more important role determining the size of these organisms.

https://doi.org/10.15517/rbt.v65i3.25579
PDF (Español (España))
HTML (Español (España))

References

Abele, L. G. (1974). Species diversity of decapod crustaceans in marine habitats. Ecology, 55(1), 156-161. doi.org/10.2307/1934629

Álvarez-León, L., Aguilera-Quiñones, J., Andrade-Amaya, C. & Novak, P. (1995). Caracterización general de la zona de surgencia en La Guajira colombiana. Revista de la Academia Colombiana de Ciencias Físicas y Naturales, 19(75), 679-694.

Andrade, C., & Barton, E. (2005). The Guajira upwelling system. Continental Shelf Research, 25, 1003-1022. doi:10.1016/j.csr.2004.12.012

Angilletta, M., & Dunham, A. (2003). The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. American Naturalist, 162(3), 332-342.

Arcos-1, ISA, & CIOH. (2000). Estudio de impacto ambiental del proyecto de cable submarino de fibra óptica ARCOS-1. EIA. Informe técnico. CIHO, Cartagena, Colombia.

Atkinson, D. (1994). Temperature and organism size-a biological law for ectotherms. Advances in Ecological Research, 25, 1-58. doi:10.1016/S0065-2504(08)60212-3

Atkinson, D., & Sibly, R. (1997). Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution, 12, 235-239. doi:10.1016/S0169-5347(97)01058-6

Berkenbusch, K., Probert, P. K., & Nodder, S. D. (2011). Comparative biomass of sediment benthos across a depth transect, Chatham Rise, Southwest Pacific Ocean. Marine Ecology Progress Series, 425, 79-90.

Blackburn, T., & Gaston, K. (1994). Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution, 9, 471-474. doi: 10.1016/0169-5347(94)90311-5

Blanco, J. (1988). Las variaciones ambientales estacionales en las aguas costeras y su importancia para la pesca en la región de Santa Marta, Caribe colombiano (Tesis de Maestría). Universidad Nacional de Colombia, Bogotá.

Bula, G. (1977). Algas marinas bénticas indicadoras de un área afectada por aguas de surgencia frente a la costa Caribe de Colombia. Anales del Instituto de Investigaciones Marinas Punta Betín, 9, 45-71.

Childress, J. J., & Thuesen, E. V. (1993). Effects of hydrostatic pressure on metabolic rates of six species of deep-sea gelatinous zooplankton. Limnology and Oceanography, 38(3), 665-670. doi: 10.4319/lo.1993.38.3.0665

Criales-Hernández, I. M., García, C. B., & Wolf, M. (2006). Flujos de biomasa y estructura de un ecosistema de surgencia tropical en La Guajira, Caribe colombiano. Revista de Biología Tropical, 54(4), 1257-1282.

Danovaro, R., Snelgrove, P. V., & Tyler, P. (2014). Challenging the paradigms of deep-sea ecology. Trends in Ecology & Evolution, 29(8), 465-475. doi.org/10.1016/j.tree.2014.06.002

Durden, J. M., Bett, B. J., Jones, D. O., Huvenne, V. A., & Ruhl, H. A. (2015). Abyssal hills – hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Progress in Oceanography, 137, 209-218.

Escobar-Briones, E., & Alvarez, F. (2002). Modern approaches to the study of Crustacea. New York: Springer Science.

Fierro, M. A. (2004). Estudio de los principales aspectos biológicos y de distribución de las especies dominantes de Agononida, Munida y Munidopsis en el Caribe colombiano (Crustacea: Decapoda: Galatheidae) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.

Gage, J. D., & Tyler, P. A. (1991). Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge: Cambridge University Press.

Hardy, S. M., Smith, C. R., & Thurnherr, A. M. (2015). Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test. Proceedings of the Royal Society B, 282, 20150193.

Hoey, G. V., Degraer, S., & Vincx, M. (2004). Macrobenthic community structure of soft-bottom sediments at the Belgian continental shelf. Estuarine, Costal and Shelf Science, 59, 599-613. doi:10.1016/j.ecss.2003.11.005

Instituto de Investigaciones Marinas y Costeras (Invemar). (2000). Informe final del proyecto caracterización de la macrofauna del Caribe colombiano. Fase 1: Epifauna de la franja superíor del talud continental (150-450 m). Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Instituto de Investigaciones Marinas y Costeras (Invemar). (2002a). Informe del estado de los ambientes marinos y costeros de Colombia: Año 2002. Serie de publicaciones periódicas No. 8. Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Invemar. (2002b). Informe final del proyecto caracterización y catalogación de la macrofauna marina del Caribe colombiano, Fase 2. Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Invemar & Corpoguajira. (2006). Informe final del proyecto caracterización de la zona costera del departamento de La Guajira: una aproximación para su manejo integrado. Santa Marta: Instituto de Investigaciones Marinas y Costeras (Invemar).

Jensen, P. (1988). Nematode assemblages in the deep-sea benthos of the Norwegian Sea. Deep-Sea Research, 35, 1173-1184.

Lampitt, R. S., Billett, D. S., & Rice, A. L. (1986). Biomass of the invertebrate megabenthos from 500 to 4100 m in the northeast Atlantic Ocean. Marine Biology, 93, 69-81. doi: 10.1007/BF00428656

Lavaleye, M. S., Duineveld, G. C., Berghuis, E. M., Kok, A., & Witbaard, R. A. (2002). Comparison between the megafauna communities on the N.W. Iberian and Celtic continental margins-effects of coastal upwelling? Progress in Oceanography, 52, 459-476. doi:10.1016/S0079-6611(02)00019-8

Leduc, D., Pilditch, C. A., & Nodder, S. D. (2016). Partitioning the contributions of mega-, macro-and meiofauna to benthic metabolism on the upper continental slope of New Zealand: Potential links with environmental factor sand trawling intensity. Deep-Sea Research I, 108, 1-12. doi.org/10.1016/j.dsr.2015.12.003

Mahaut, M. L., Sibuet, M., & Shirayama, Y. (1995). Weight-dependent respiration rates in deep-sea organisms. Deep-Sea Research, 42, 1575-1582. doi: 10.1016/0967-0637(95)00070-M

Marcus, N. H. (1983). Phenotypic variability in echinoderms. En M. Jangoux & J. M. Lawrence (Eds.), Echinoderm Studies (pp. 18-32). Rotterdam: A. A. Balkema.

Márquez, G. (1982). Los sistemas ecológicos marinos del sector adyacente a Santa Marta, Caribe colombiano I: generalidades. Ecología Tropical, 2(1), 5-13.

May, R. M. (1988). How many species are there on the earth? Science, 241 (4872), 1441-1449. doi: 10.2307/1702670

Mcclain, C. R., Rex, M. A., & Etter, R. J. (2009). Patterns in deep-sea macroecology. En J. D. Witman & R. Kaustuv (Eds), Marine macroecology (pp. 65-100). Londres: The University of Chicago Press.

McMahon, T. (1973). Size and shape in biology. Science, 179, 1201-1204. doi: 10.2307/1735749

Molina, A., Pelgrain, A., Suzunaga, J., & Giraldo, L. (1996). Comportamiento de la dinámica marina en el sector costero entre Galerazamba y Cartagena. Boletín Cientifico CIOH, 17, 73-78.

O’Dea, A., Rodríguez, F., & Romero, T. (2007). Response of zooid size in Cupuladria exfragminis (Bryozoa) to simulated upwelling temperatures. Marine Ecology, 28, 1-9. doi:10.1111/j.1439-0485.2006.00144.x

Okonski, S. L., & Martin, L. W. (1977). Materiales didácticos para la capacitación en tecnología de artes y métodos de pesca. Contribución al estudio de las pesquerías de México. México: Food and Agriculture Organization (FAO).

Olabarria, C., & Thurston, M. H. (2003). Latitudinal and bathymetric trends in body size of the deep-sea gastropod (King) Troschelia berniciensis. Marine Biology, 143, 723-730. doi: 10.1007/s00227-003-1116-6

Paine, R. T. (1976). Size-limited predation: an observational and experimental approach with the Pisaster-Mytilus interaction. Ecology, 57, 858-73. doi.org/10.2307/1941053

Parsons, T. R., Takahashi, M., & Hargrave, B. (1977). Biological Oceanographic Processes. Oxford: Pergamon Press.

Peters, R. H. (1983). The ecological implications of body size. Cambridge: Cambridge University Press.

Pfannkuche, O. (1985). The deep-sea meiofauna of the Porcupine Seabright and abyssal plain (N.E. Atlantic): population structure, distribution, standing stocks. Oceanologica Acta, 8, 343-353.

Polloni, P., Haedrich, R., Rowe, G., & Clifford, C. H. (1979). The size-depth relationship in deep ocean animals. Internationale Reveu der Gesamten Hydrobiologie, 64, 39-46. doi: 10.1002/iroh.19790640103

Reuman, D. C., & Cohen, J. E. (2004). Trophic links’ length and slope in the Tuesday Lake food web with species’ body mass and numerical abundance. Journal of Animal Ecology, 73, 852-866. doi: 10.1111/j.0021-8790.2004.00856.x

Rex, M. A., & Etter, R. J. (1998). Bathymetric patterns of body size: implications for deep-sea biodiversity. Deep-Sea Research II, 45, 103-127.

Rex, M. A., Etter, R. J., Clain, A. J., & Hill, M. S. (1999). Bathymetric patterns of body size in deep-sea gastropods. Evolution, 53(4), 1298-1301. doi: 10.2307/2640833

Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, J. C., Johnson, N. A., … & Avery, R. (2006). Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series, 317, 1-8.

Sanders, H. L., & Hessler, R. (1969). Ecology of the deep-sea benthos. Science, 163, 1419-1424. doi: 10.1126/science.163.3874.1419

Sebens, K. P. (1982). The limits to indeterminate growth: An optimal size model applied to passive suspension feeders. Ecology, 63, 209-222. doi.org/10.2307/1937045

Sebens, K. P. (1987). The ecology of indeterminate growth in animals. Annual Review of Ecology Evolution and Systematics, 18, 371-407.

Soetaert, K., & Heip, C. (1989). The size of nematode assemblages along a Mediterranean deep-sea transect. Deep-Sea Research, 36A, 93-102. doi:10.1016/0198-0149(89)90020-4

Soetaert, K., Franco, M., Lampadaríou, N., Muthumbi, A., Steyaert, M., Vandepitte L., … & Vanaverbeke, J. (2009). Factors affecting nematode biomass, length and width from the shelf to the deep sea. Marine Ecology Progress Series, 392, 123-132. doi: 10.3354/meps08202

Sturm, C. F., Pearce, T. A., & Valdés, A. (2007). The Mollusks: a guide to their study, collection, and preservation. Middletown: American Library Association Choice.

Sutherland, J. P. (1970). Dynamics of high and low populations of the limpet, Acmaea scabra (Gould). Ecological Monographs, 40, 169-188. doi.org/10.2307/1942294

Tecchio, S., Ramírez-Llodra, E., Sardà, F., Company, J. B., Palomera, I., Mechó, A., Pedrosa-Pàmies, R., & Sanchez-Vidal, A. (2011). Drivers of deep Mediterranean megabenthos communities along longitudinal and bathymetric gradients. Marine Ecology Progress Series, 439, 181-192. doi: 10.3354/meps09333

Thiel, H. (1975). The size structure of the deep-sea benthos. Internationale Reveu der Gesamten Hydrobiologie, 60, 575-606.

Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S., & Wilke, R. J. (1989). Meiobenthos of the Hatteras abyssal plain and Puerto Rico Trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep-Sea Research, 18, 941-57. doi:10.1016/0198-0149(89)90058-7

Van der Grient, J. M., & Rogers, A. D. (2015). Body size versus depth: regional and taxonomical variation in deep-sea meio- and macrofaunal organisms. Advances in Marine Biology, 71, 71-99. doi.org/10.1016/bs.amb.2015.07.002

Venables, W. N., & Dichmont, C. M. (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research, 70, 319-337. doi:10.1016/j.fishres.2004.08.011

Warwick, R. M., & Clarke, K. R. (1996). Relationships between body-size, species abundance and diversity in marine benthic assemblages: facts or artefacts? Journal of Experimental Marine Biology and Ecology, 202, 63-71. doi:10.1016/0022-0981(96)00031-7

Webb, T. J. (2012). Marine and terrestrial ecology: unifying concepts, revealing differences. Trends in Ecology and Evolution, 27(10) 535-541. doi.org/10.1016/j.tree.2012.06.002

Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends in Ecology and Evolution, 20(7), 1-8. doi.org/10.1016/j.tree.2005.04.005

Zulliger, D., & Lessios, H. A. (2010). Phylogenetic relationships in the genus Astropecten Gray (Paxillosida: Astropectinidae) on a global scale: molecular evidence for morphological convergence, species-complexes and possible cryptic speciation. Zootaxa, 2504, 1-19.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.