Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Distribución potencial y conectividad del paisaje: criterios para reevaluar el grado de amenaza de Campylorhynchus yucatanicus (Aves: Troglodytidae)
PDF
HTML

Palabras clave

endemic
threatened
Yucatan Wren
potential distribution
landscape connectivity.
endémica
amenazada
matraca yucateca
distribución potencial
conectividad

Cómo citar

Serrano-Rodríguez, A., Escalona Segura, G., Plasencia Vázquez, A. H., Iñigo Elias, E. E., & Ruiz-Montoya, L. (2017). Distribución potencial y conectividad del paisaje: criterios para reevaluar el grado de amenaza de Campylorhynchus yucatanicus (Aves: Troglodytidae). Revista De Biología Tropical, 65(4), 1554–1568. https://doi.org/10.15517/rbt.v65i4.26599

Resumen

La distribución geográfica y la calidad del hábitat son criterios fundamentales para evaluar el grado de riesgo de extinción y amenaza de las especies. Campylorhynchus yucatanicus es un ave endémica de la costa norte de la Península de Yucatán, México con distribución restringida a una estrecha franja de hábitat, entre los estados de Campeche y Yucatán. En la actualidad, la costa yucateca ha perdido más de la mitad de la vegetación de duna costera y otros hábitats se han modificado principalmente por falta de un plan de urbanización y mal aprovechamiento de los recursos naturales. Estos factores amenazan a C. yucatanicus, que está catalogada como una especie casi amenazada por la UICN y como una especie en peligro de extinción por la legislación mexicana, NOM-059-2010. En este estudio se modeló su distribución potencial utilizando 64 registros de presencia de variadas fuentes (1960 y 2009), un conjunto de variables climáticas y una capa de Índice de vegetación de diferencia normalizada (NDVI). Para evaluar el grado de conectividad del paisaje se empleó un mapa de tipos de vegetación y uso de suelo, distancia a los poblados y a las carreteras asfaltadas. El modelo de distribución potencial arrojó una distribución potencial de 2 711 km2 aproximadamente, 2 % del área total de la Península de Yucatán. De esta área, solo el 27 % está protegido con categoría de Reserva de la Biósfera y sólo el 10 % corresponde a áreas núcleo de conservación, con restricciones de uso de suelo y protección relativamente efectiva. Las poblaciones de la región de Ría Lagartos y del oeste de Celestún, parecen ser las más aisladas, teniendo en cuenta el modelo de conectividad del paisaje. La permeabilidad del paisaje entre fragmentos de vegetación de duna cerca de la costa es baja, principalmente por la distribución de las zonas urbanas. Los resultados pueden ser usados para establecer estrategias de manejo y sugieren que la especie se encuentra en un estado de conservación más delicado del que hasta ahora se había descrito por la UICN. Consideramos que C. yucatanicus debe tener categoría en peligro de la UICN según su distribución y la conectividad de paisaje actual.

https://doi.org/10.15517/rbt.v65i4.26599
PDF
HTML

Citas

Alaniz, A. J., Galleguillos, M., & Perez-Quezada, J. F. (2016). Assessment of quality of input data used to classify ecosystems according to the IUCN Red List methodology: The case of the central Chile hotspot. Biological Conservation, 204, 378-385. doi 10.1016/j.biocon.2016.10.038

Amos, J. N., Bennett, A. F., Mac Nally, R., Newell, G., Pavlova, A., Radford, J. Q., Thomson, J. R., White, M., & Sunnucks P. (2012). Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds. PLoS ONE, 7(2), e30888. doi:10.1371/journal.pone.0030888

Barker, F. K. (2007). Avifaunal interchange across the Panamanian Isthmus: Insights from Campylorhynchus wrens. Biological Journal of the Linnean Society, 90, 687-702.

Barr, K. R., Kus, B. E., Preston, K. L., Howell, S., Perkins, E., & Vandergast, A. G. (2015). Habitat fragmentation in coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus). Molecular Ecology, 24, 2349-2363.

Barve, N. (2008). Tool for partial-ROC (Biodiversity Institute, Lawrence, KS), ver 1.0.

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377. doi:10.1111/j.1461-0248.2011.01736.x

Berlanga, H., Gómez, H., Vargas, V. M., Rodríguez, V., Sánchez, L. A., Ortega, R., & Calderón, R. (2015). Aves de México. Lista actualizada de especies y nombres comunes. México D. F, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).

Bezaury-Creel, J., & Gutiérrez-Carbonell, D. (2009). Áreas naturales protegidas y desarrollo social en México. In R. Dirzo, R. González, I. J. March (Eds.), Capital natural de México, Vol. II: Estado de conservación y tendencias de cambio (pp. 385-431). México D. F., México: CONABIO.

Bricker, S. B., Clement, C. G., Pirhalla, D. E., Orlando, S. P., & Farrow, D. R. G. (1999). National estuarine eutrophication assessment: Effects of nutrient enrichment in the Nation´s estuaries (NOAA, National Ocean Service, Special Projects Office, and the National Center for Coastal Ocean Science). Maryland, USA: Silver Spring.

Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M. J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497.

Broennimann, O., & Guisan, A. (2008). Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters, 4, 585-589.

Ceballos, G., Gómez Silva, G., & del Coro Arizmendi M. (2002). Áreas prioritarias para la conservación de las aves en México. CONABIO. Biodiversitas, 41, 1-7.

Cuervo, A. P., Téllez, O., Gómez, M., Venegas, C., Manjarrez, J., & Martínez, E. (2013). An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology, 34, 2427-2437.

CONANP. (2000). Programa de Manejo de la Reserva de la Biosfera Ría Celestún. Comisión Nacional de Áreas Naturales Protegidas, Estado de Yucatán, México. 191 p.

Correa Ayram, C. A., Mendoza, M. E., Etter, A., & Pérez Salicrup, D. R. (2016). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7-37.

De Carvalho, D. L., Sousa-Neves, T., Cerqueira, P. V., Gonsioroski, G., Silva, S. M., Silva, D. P., Paiva Silva, D., & Dantas Santos, M. P. (2017). Delimiting priority areas for the conservation of endemic and threatened Neotropical birds using a niche-based gap analysis. PLoS ONE, 12(2), e0171838. doi:10.1371/journal.pone.0171838

Del Hoyo, J., Elliot, A., & Christie, D. (2005). Handbook of the birds of the world (Volume 10: Cuckoo-shrikes to trushes). Barcelona, España: Lynx Edicions.

Durán, R., Torres, W. M., & Espejel, I. (2010). Vegetación de dunas costeras. In R. Durán, M. Méndez, & J. Arellano (Eds.), Diversidad biológica y desarrollo humano en Yucatán (pp. 136-137). Yucatán, México: CICY, SEDUMA PNUD, CONABIO.

Dyer, E. E., Franks, V., Cassey, P., Collen, B., Cope, R. C., Jones, K. E., Sekercioglu, C. H., & Blackburn, T. M. (2016). A global analysis of the determinants of alien geographical range size in birds. Global Ecology and Biogeography, 25(11), 1346-1355. DOI: 10.1111/geb.12496

Elith, J., & Graham, C. H. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151.

Espejel, I. (1984). La vegetación de las dunas costeras de la Península de Yucatán. I. Análisis florístico del estado de Yucatán. Biótica, 9(2), 183-210.

Espejel, I. (1987). A phytogeographical analysis of coastal vegetation in the Yucatan Peninsula. Journal of Biogeography, 14, 499-519.

Euán, J. & Scout, W. G. (2002). Promoting integrated coastal management in the Yucatan Peninsula, México. Journal of Policy Studies, 12, 1-16.

Flores, J. S., & Espejel, I. (1994). Tipos de Vegetación de la Península de Yucatán. Etnoflora Yucatanense. Fascículo 3. Yucatán, México: Universidad Autónoma de Yucatán.

Garrido-Garduño, T., & Vázquez-Domínguez, E. (2013). Métodos de análisis genéticos, espaciales y de conectividad en genética del paisaje. Revista Mexicana de Biodiversidad, 84, 1031-1054.

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. México DF: Serie libros. Instituto de Geografía-UNAM.

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N. G., Lehmann, A., & Zimmermann, N. E. (2006). Using Niche-Based Models to Improve the Sampling of Rare Species. Conservation Biology, 20(2), 501-511.

Herrera, J. A, Medina, I., Arandal, N., Zaldivar, J. A., Ramírez, J., & Trejo, J. (2002). Trophic status in coastal waters of the Yucatán Península (SE, México) using water quality indicators. In C. A. Brebbia (Ed.), Coastal Environment. Environmental Problems in Coastal Regions IV (pp. 351-359). Southampton, England: Wessex Institute of Technology.

Herrera, J. A., Comín, F. A., & Capurro, L. (2004). Los usos y abusos de la zona costera en la Península de Yucatán. In E. Rivera, G. J. Villalobos, I. Azuz & F. Rosado (Eds.), El Manejo Costero en México (pp. 387-396). Quintana Roo, México: Universidad Autónoma de Campeche, SEMARNAT, CETYS-Universidad, Universidad de Quintana Roo.

Howell, S., & Webb, S. (1995). A Field Guide to the Birds of México and Northern Central America. Nueva York, USA: Oxford University Press.

INEGI. (2013). Conjunto Nacional de Uso de Suelo y Vegetación a escala 1:250000. Serie V, DGG-INEGI. México: Instituto nacional de Estadística y Geografía (INEGI). Recuperado de http://www.inegi.org.mx/

INEGI. (2014). Guía para la interpretación de cartografía: uso del suelo y vegetación: escala 1:250, 000: Serie V. México: Instituto nacional de Estadística y Geografía (INEGI). Recuperado en http://www.inegi.org.mx/geo/

IUCN. (2015). The IUCN red list of threatened species. Version 2015-4. Recuperado en http://www.iucnredlist.org

Keith, D. A. (2015). Assessing and managing risks to ecosystem biodiversity. Austral Ecology, 40, 337-346.

Koen, E. L., Garroway, C. J., Wilson, P. J., & Bowman, J. (2010). The effect of map boundary on estimates of landscape resistance to animal movement. PLoS ONE, 5(7), e11785. doi:10.1371/journal.pone.0011785

Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology & Evolution, 23, 141-148.

Lamb, D., Erksine, P. D., & Parotta, J. A. (2005). Restoration of tropical forest landscapes. Science, 310, 1628-1632.

Leirana-Alcocer, J. L., Hernández-Betancourt, S., Salinas-Peba, L., & Guerrero-González, L. (2009). Cambios en la estructura y composición de la vegetación relacionados con los años de abandono de tierras agropecuarias en la selva baja caducifolia espinosa de la Reserva de Dzilam, Yucatán. Polibotánica, 27, 51-68.

Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.

MacKinnon, B. (2013). Sal a pajarear Yucatán. Guía de aves. México D. F, México: La Vaca Independiente S.A. de C.V.

Marini, M. A., Barbet-Massin, M., Lopes, L. E., & Jiguet, F. (2009). Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Conservation Biology, 23, 1558-1567.

Marini, M. A., Barbet-Massin, M., Lopes, L. E., & Jiguet, F. (2010). Predicting the occurrence of rare Brazilian birds with species distribution models. Journal Ornithology, 151, 857-866.

Maass, M., Jardel, E., Martínez-Yrízar, A., Calderón, L., Herrera, J., Castillo, A., Euán-Ávila, J., & Equihua, M. (2010). Las áreas naturales protegidas y la investigación ecológica de largo plazo en México. Ecosistemas, 19(2), 69-83.

McRae, B. H., & Shah, V. B. (2009). Circuitscape user’s guide. California, Estados Unidos: The Univeristy of California, Santa Barbara. Recuperado en http://www.circuitscape.org.

McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712-2724.

Modest, R. B., & Hassan, S. N. (2016). Species Composition of Tropical Understory Birds in Threatened East African Coastal Forests Based on Capture Data. International Journal of Zoology, V2016, 9. doi.org/10.1155/2016/1390364

Naranjo, E. J., Dirzo, R., López, J. C., Rendón-von, J., Reuter, A., & Sosa-Nishizaki, Ó. (2009). Impacto de los factores antropogénicos de afectación directa a las poblaciones silvestres de flora y fauna, en Capital natural de México, Vol. II. In Estado de conservación y tendencias de cambio (pp. 247-276). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).

Navarro-Sigüenza, A. G., & Peterson, A. T. (2007). Campylorhynchus yucatanicus (matraca yucateca) residencia permanente. Distribución potencial. In: Mapas de las aves de México basados en WWW (Informe final SNIB-CONABIO proyecto No. CE015). México D. F.: Museo de Zoología, Facultad de Ciencias, UNAM & University of Kansas, Museum of Natural History, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).

Paynter, R. A. (1955). The Ornithogeography of the Yucatan Peninsula. New Haven, Connecticut: Museum of Comparative Zoology Harvard University.

Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T. P., & Lees, D. C. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704-1711.

Peterson, A. T, Papes, M., & Soberon, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63-72.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.

Rabenold, K. N. (1990). Campylorhynchus wrens: The ecology of delayed dispersal and cooperation in the Venezuelan savanna. In P. B. Stacey, & W. D. Koenig (Eds.), Cooperative breeding in birds: long-term studies of ecology and behavior (pp. 157-196). United Kingdom: Cambridge University Press.

R Development Core Team. 2014. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rödder, D., Nekum, S., Cord, A. F., & Engler, J. O. (2016). Coupling satellite data with species distribution and connectivity models as a tool for environmental management and planning in matrix-sensitive species. Environmental Management, 58(1), 130-143. doi 10.1007/s00267-016-0698-y

Rodrigues, A. S. L., Akçakaya, H. R., Andelman, S. J., Bakarr, M. I., Boitani, L., Brooks, T. M., Chanson, J. S., Fishpool, L. D. C., da Fonseca, G. A. B., Gaston, K. J., Hoffmann, M., Marquet, P. A., Pilgrim, J. D., Pressey, R. L., Schipper, J., Sechrest, W., Stuart, S. N., Underhill, L. G., Waller, R. W., Watts, M. E. J., & Yan, X. (2004). Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area Network. BioScience, 54(12), 1092-1100.

SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección Ambiental. Especies nativas de México de flora y fauna silvestres. Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo. Diario Oficial de la Federación. 30 de diciembre de 2010, Segunda Sección. México, DF: SEMARNAT.

Shimazaki, A., Yamaura, Y., Senzaki, M., Yabuhara, Y., Akasaka, T., & Nakamura, F. (2016). Urban permeability for birds: An approach combining mobbing-call experiments and circuit theory. Urban Forestry & Urban Greening, 19(1), 167-175.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London, England: Chapman & Hall.

Stotz, D. F., Fitzpatrick, J. W., Parker III, T. A., & Moskovits, D. K. (1996). Neotropical birds: ecology and conservation. Illinois, USA: The University of Chicago Press, Chicago.

Taylor, P. D., Fahrig, L., Henein, K., & Merriam G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68, 571-573.

Tischendorf, L., & L. Fahrig. (2000). How should we measure landscape connectivity? Landscape Ecology, 15(7), 633-641.

UICN. (2012). Categorías y Criterios de la Lista Roja de la UICN: Versión 3.1. (2nd edition). Gland, Suiza y Cambridge, Reino Unido: UICN.

Vargas-Soriano, J., Salgado-Ortíz, J., & Escalona-Segura, G. (2010). Breeding phenology and nesting success of the Yucatan Wren in the Yucatan Peninsula, Mexico. The Wilson Journal of Ornithology, 122(3), 439-446.

Vázquez-Miranda, H. A., Navarro-Sigüenza, G., & Omland, K. E. (2009). Omland. Phylogeography of the Rufous-Naped wren (Campylorhynchus rufinucha): speciation and hybridization in Mesoamerica. The Auk, 126(4), 765-778.

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883.

Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607-611.

Wilson, K. A., Westphal, M. I., Possingham, H. P., & Elith, J. (2005). Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biology Conservations, 122, 99-112.

Zimmerman, D. A. (1957). Some remarks on the behavior of the Yucatan Cactus Wren. The Condor, 59, 53-58.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.