Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Uso del suelo e integridad biótica en arroyos someros de la cuenca del río Hondo, península de Yucatán, México
PDF (English)
HTML (English)

Archivos suplementarios

Letter to the editor (English)

Palabras clave

human impact
fishes
environmental risk
landscape dynamics
index of biotic integrity
aquatic diversity.
impacto humano
peces
riesgo ambiental
variación del paisaje
índice biótico de integridad
diversidad acuática.

Cómo citar

Pacheco-Díaz, R. I., Schmitter-Soto, J. J., Schmook, B., Islebe, G. A., & Weissenberger, H. (2017). Uso del suelo e integridad biótica en arroyos someros de la cuenca del río Hondo, península de Yucatán, México. Revista De Biología Tropical, 65(4), 1448–1458. https://doi.org/10.15517/rbt.v65i4.26975

Resumen

 Los ambientes acuáticos en la cuenca del río Hondo, sureste de la península de Yucatán, enfrentan diversas amenazas. Algunos de estos impactos, e.g. contaminación por plaguicidas, pueden depender del uso de suelo o cobertura. El objetivo fue evaluar el efecto del uso del suelo/cobertura sobre un índice biótico de integridad (IBI) basado en peces, publicado previamente, diseñado para arroyos someros en esta cuenca. La hipótesis era que los usos del suelo que involucran deforestación y contaminación, entre ellos urbanización, ganadería o cultivo de caña de azúcar, se verían reflejados en valores bajos del IBI, por lo menos a ciertas escalas espaciales. Los 23 sitios usados originalmente para estimar por electropesca la abundancia relativa y otras características de especies y gremios selectos de peces, para construir el IBI, fueron visitados de nuevo en febrero 2010 para validar por inspección directa el tipo de uso del suelo/cobertura sugerido por la información de paisaje en bases de datos digitales. Se analizó el efecto de siete tipos de uso del suelo/cobertura (agricultura, ganadería, asentamientos humanos, cuerpos de agua, humedales, bosque y vegetación secundaria) sobre los valores del IBI, a cuatro escalas espaciales, i.e., el porcentaje de cada uso del suelo/cobertura en círculos progresivamente mayores (125, 250, 500 y 1 000 m de diámetro) centrados en el cuerpo de agua donde se midió el valor del IBI. Los porcentajes de uso del suelo/cobertura por escala se correlacionaron entre sí y con los valores correspondientes del IBI para explorar su asociación; luego, mediante pruebas t de Student se buscaron diferencias significativas en cobertura entre grupos de localidades por encima y por debajo del valor mediano del IBI, así como pruebas U de Mann-Whitney para comparar valores del IBI entre localidades con o sin una cobertura dada. La agricultura, asentamientos humanos y vegetación secundaria mostraron una relación negativa con el IBI, lo cual sugiere un impacto de las actividades humanas sobre la salud de los ecosistemas acuáticos. Las diferencias fueron significativas para el bosque (mayor en sitios con mejor integridad acuática) y los asentamientos humanos (menor en sitios con mayor valor del IBI). De todas las clases paisajísticas en la cuenca del río Hondo, las de origen antrópico, excepto los pastizales para ganadería, tendieron a ser perjudiciales para la integridad biótica acuática. 

https://doi.org/10.15517/rbt.v65i4.26975
PDF (English)
HTML (English)

Citas

Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(2002), 257-284. http://doi.org/10.1146/annurev.ecolsys.35.120202.110122

Allan, J. D., Erickson, D. L., & Fay, J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37(1), 149-161. http://doi.org/10.1046/j.1365-2427.1997.d01-546.x

Arriaga Cabrera, L., Espinosa-Rodríguez, J. M., Aguilar-Zúñiga, C., Martínez-Romero, E., Gómez- Mendoza, L., & Loa, E. (2000). Regiones terrestres prioritarias de México. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

Bardgett, R. D., Mawdsley, J. L., Edwards, S., & Hobbs, P. J. (1999). Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Ecology, 13, 650-660.

Buenfil-Rojas, A. M., Álvarez-Legorreta, T., & Cedeño-Vázquez, J. R. (2014). Metals and metallothioneins in Morelet’s crocodile (Crocodylus moreletii) from a transboundary river between Mexico and Belize. Archives of Environmental Contamination and Toxicology, 68(2), 265-273. http://doi.org/10.1007/s00244-014-0088-5

Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(1998), 559-568. http://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

Castellanos, M. B. (2010). A return to servitude: Maya migration and the tourist trade in Cancún. Minneapolis: University of Minnesota Press.

Cooper, C. M. (1993). Biological effects of agriculturally derived surface water pollutants on aquatic systems-a review. Journal of Environmental Quality, 22(3), 402-408.

Córdova-Ávalos, A., Alcántara-Carbajan, J. L., Guzmán-Plazola, R., Mendoza-Martínez, G. D., & González-Romero, V. (2009). Desarrollo de un Índice de Integridad Biológica Avifaunístico para dos asociaciones vegetales de la Reserva de la Biósfera Pantanos de Centla, Tabasco. Universidad y Ciencia, 25(1), 1-22. Retrieved from http://www.publicaciones.ujat.mx/publicaciones/uciencia/abril2009/1--340.pdf

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2008). InfoStat, versión 2008. Grupo InfoStat. Córdoba, Argentina: FCA, Universidad Nacional de Córdoba.

Environmental System Research Institute (ESRI). (1999). ArcView GIS. Version 3.2. New York: Environmental Systems Research Institute.

Esselman, P. C., Schmitter-Soto, J. J., & Allan, J. D. (2013). Spatiotemporal dynamics of the spread of African tilapias (Pisces: Oreochromis spp.) into rivers of northeastern Mesoamerica. Biological Invasions, 15(7), 1471-1491. http://doi.org/10.1007/s10530-012-0384-9

Findlay, S., Quinn, J. M., Hickey, C. W., Burrell, G., & Downes, M. (2001). Effects of land use and riparian flowpath on delivery of dissolved organic carbon to streams. Limnology and Oceanography, 46(2), 345-355. http://doi.org/10.4319/lo.2001.46.2.0345

Fisch, F., Branco, J. O., & Menezes, J. T. de. (2016). Ictiofauna como indicador de la integridad biótica de un ambiente estuarino. Acta Biológica Colombiana, 2121(11), 27-3827. http://doi.org/10.15446/abc.v21n1.46151

Fitzpatrick, F. A., Scudder, B. C., Lenz, B. N., & Sullivan, D. J. (2001). Effects of multiscale environmental characteristics on agricultural stream biota in eastern Wisconsin. Journal of the American Water Resources Association, 37(6), 1489-1507. http://doi.org/10.1017/CBO9781107415324.004

Fore, L. S. (2002). Response of diatom assemblages to human disturbance: development and testing of a multimetric index for the Mid-Atlantic Region (USA). In T. P. Simon (Ed.), Biological response signatures: indicator patterns using aquatic communities (pp. 445-480). Boca Raton, FL: CRC.

García, G., & Secaira, F. (2006). Una visión para el futuro: cartografía de las selvas maya, zoque y olmeca: plan ecorregional de las selvas maya, zoque y olmeca. San José, Costa Rica: TNC Infoterra, Conservation International.

Gergel, S. E., Turner, M. G., Miller, J. R., Melack, J. M., & Stanley, E. H. (2002). Landscape indicators of human impacts to riverine systems. Aquatic Sciences, 64, 118-128.

Gómez-Pompa, A. (1971). Posible papel de la vegetación secundaria en la evolución de la flora tropical. Biotrópica, 3(2), 125-135.

Instituto Nacional de Estadística Geografía e Informática (INEGI). (2009). Mapa digital de México. Retrieved January 1, 2010, from http://gaia.inegi.org.mx/mdm5/viewer.html

Intergovernmental Panel on Climate Change (IPCC). (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York.

Jones III, E. B. D., Helfman, G. S., Harper, J. O., & Bolstad, P. V. (1999). Effects of riparian forest removal on fish assemblages in southern Appalachian streams. Conservation Biology, 13(6), 1454-1465.

Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21-27. http://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2

Laurance, W. F., Fearnside, P. M., Laurance, S. G., Delamonica, P., Lovejoy, T. E., Rankin-De Merona, J. M., …, Gascon, C. (1999). Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management, 118(1-3), 127-138. http://doi.org/10.1016/S0378-1127(98)00494-0

Lorion, C. M., & Kennedy, B. P. (2009). Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecological Applications, 19(2), 468-479.

Lowry, R. (2016). VassarStats: website for statistical computation. Retrieved October 1, 2016, from http://vassarstats.net/index.html

Miranda, F. (1958). Estudios acerca de la vegetación. In E. Beltrán (Ed.), Los recursos naturales del sureste y su aprovechamiento (Vol. 2, pp. 215-271). Mexico City: Instituto Mexicano de Recursos Naturales Renovables.

Naiman, R. J., Bechtold, S., Drake, D. C., Latterell, L. L., O’Keefe, T. C., & Balian, E. V. (2005). Origins, patterns, and importance of heterogeneity in riparian systems. In G. Lovett, C. G. Jones, M. G. Turner, & K. C. Weathers (Eds.), Ecosystem Function in Heterogeneous Landscapes (pp. 279-309). New York: Springer.

Omernik, J. M., Abernathy, A. R., & Male, L. M. (1981). Stream nutrient levels and proximity of agricultural and forest land to streams: some relationships. Journal of Soil and Water Conservation, 36(4), 227-231.

Pacheco Díaz, R. I. (2011). Efectos del paisaje sobre un índice biótico de integridad en el río Hondo (M.Sc. Thesis). El Colegio de la Frontera Sur, Chetumal, Mexico.

Pinto, B. T., Araújo, F. G. C., & Hughes, R. M. (2006). Effects of landscape and riparian condition on a fish index of biotic integrity in a large southeastern Brazil river. Hydrobiologia, 556(1), 69-83. http://doi.org/10.1007/s10750-005-9009-y

Richards, C., & Host, G. E. (1994). Examining land influences on stream habitat and microinvertebrates: A GIS approach. Journal of the American Water Resources Association, 30(4), 729-738.

Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11(3), 141-156. http://doi.org/10.1007/BF02447513

Sánchez, A. J., Álvarez-Legorreta, T., Pacheco, J. G., Carrillo, L., & González, R. A. (2016). Calidad del agua subterránea: acuífero sur de Quintana Roo, México. Tecnología y Ciencias del Agua, 7(4), 75-96.

Schmitter-Soto, J. J. (2014). Los índices bióticos de integridad en el monitoreo ambiental. In C. González-Zwarth, A. Vallarino, J. C. Pérez, & A. Low Pfeng (Eds.), Bioindicadores: guardianes de nuestro futuro ambiental (pp. 61-78). Mexico City: INECC, ECOSUR.

Schmitter-Soto, J. J., & Caro, C. I. (1997). Distribution of tilapia, Oreochromis mossambicus (Perciformes: Cichlidae), and water body characteristics in Quintana Roo, Mexico. Revista de Biología Tropical, 45(3), 1257-1261.

Schmitter-Soto, J. J., Comín, F. A., Escobar-Briones, E., Herrera-Silveira, J., Alcocer, J., Suárez-Morales, E., …, Steinich, B. (2002). Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia, 467, 215-228. http://doi.org/10.1023/A:1014923217206

Schmitter-Soto, J. J., Quintana, R., Valdéz-Moreno, M. E., Herrera-Pavón, R. L., & Esselman, P. C. (2015). Armoured catfish (Pterygoplichthys pardalis) in the Hondo River basin, Mexico-Belize. Mesoamericana, 19(3), 9-19.

Schmitter-Soto, J. J., Ruiz-Cauich, L. E., Herrera-Pavón, R. L., & González-Solís, D. (2011). An Index of Biotic Integrity for shallow streams of the Hondo River basin, Yucatan Peninsula. Science of the Total Environment, 409(4), 844-852. http://doi.org/10.1016/j.scitotenv.2010.11.017

Snyder, C. D., Young, J. A., Villella, R., & Lemarié, D. P. (2003). Influences of upland and riparian land use patterns on stream biotic integrity. Landscape Ecology, 18, 647-664. http://doi.org/10.1023/B:LAND.0000004178.41511.da

Strayer, D. L., Beighley, R. E., Thompson, L. C., Brooks, S., Nilsson, C., Pinay, G., & Naiman, R. J. (2003). Effects of land cover on stream ecosystems: Roles of empirical models and scaling issues. Ecosystems, 6(5), 407-423. http://doi.org/10.1007/s10021-002-0170-0

van Oosterhout, M. P., & van der Velde, G. (2014). An advanced Index of Biotic Integrity for use in tropical shallow lowland streams in Costa Rica: Fish assemblages as indicators of stream ecosystem health. Ecological Indicators, 48, 687-698. http://doi.org/10.1016/j.ecolind.2014.09.029

van Sickle, J., Baker, A., Herlihy, P., Bayley, S., Gregory, P., Ashkenas, L., & Li, J. (2004). Projecting the biological condition of streams under alternative scenarios of human land use. Ecological Applications, 14(2), 368-380.

Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan II, R. P. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706-723. http://doi.org/10.1899/04-028.1

Wang, L., Lyons, J. D., Kanehi, P., Bannerman, R., & Emmons, E. (2000). Watershed urbanization and changes in fish communities in southeastern Wisconsin streams. Journal of the American Water Resources Association, 36(5), 1173-1189. http://doi.org/10.1111/j.1752-1688.2000.tb05719.x

Wichert, G. A., & Rapport, D. J. (1998). Fish community structure as a measure of degradation and rehabilitation of riparian systems in an agricultural drainage basin. Environmental Management, 22(3), 425-443. http://doi.org/10.1007/s002679900117

Wilcox, D. A., Meeker, J. E., Hudson, P. L., Armitage, B. J., Black, M. G., & Uzarski, D. G. (2002). Hydrologic variability and the application of Index of Biotic Integrity metrics to wetlands: A great lakes evaluation. Wetlands, 22(3), 588-615. http://doi.org/10.1672/0277-5212(2002)022[0588:HVATAO]2.0.CO;2

Yu, K., DeLaune, R. D., Tao, R., & Beine, R. L. (2008). Nonpoint source of nutrients and herbicides associated with sugarcane production and its impact on Louisiana coastal water quality. Journal of Environmental Quality, 37(6), 2275-2283.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.