Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Los hongos celulolíticos y lipolíticos aislados a partir de muestras de suelo y de hojarasca del Cerrado (Sabana brasileña).
Volumen 66 Número Regular Marzo 2018
PDF (English)
HTML (English)

Palabras clave

cellulose
lipase
filamentous fungi
lignocellulosic materials
Brazilian savanna.
celulasa
lipasa
hongos filamentosos
materiales lignocelulósicos
sabana brasileña.

Cómo citar

de Melo, M., Araujo, A. C. V., Chogi, M. A. N., & Duarte, I. C. S. (2018). Los hongos celulolíticos y lipolíticos aislados a partir de muestras de suelo y de hojarasca del Cerrado (Sabana brasileña). Revista De Biología Tropical, 66(1), 237–245. https://doi.org/10.15517/rbt.v66i1.27768

Resumen

La sabana brasileña conocida como Cerrado, es un bioma con alto grado de endemismo con el potencial de albergar muchos microorganismos de alto interés biotecnológico. Los hongos producen muchas enzimas que se aplican ampliamente en procesos industriales. El suelo del Cerrado, que suele ser ácido, es un ambiente favorable para el crecimiento de hongos capaces de degradar materiales lignocelulósicos. El objetivo del presente estudio fue aislar los hongos celulolíticos filamentosos nativos del Cerrado. Muestras de suelo y de hojarasca fueron recolectadas en el Parque Estatal del Cerrado, ubicado en el sur de Brasil. De 28 cepas aisladas, 25 produjeron celulasa que fue detectada con lugol. Las cepas fueron cultivadas en medio CMC (carboximetilcelulosa). Los aislados fueron identificados morfológicamente (color, forma de crecimiento) y por secuenciación de la región 18S rRNA, produciendo resultados congruentes. Una cepa de Colletotrichum boninense y una cepa de Trichoderma sp., ambas aisladas de muestras de suelo, presentaron la mayor actividad celulolítica. Todas las cepas mostraron actividad lipolítica, la producción y la actividad se vieron influidos por la temperatura. El presente estudio revela nuevas cepas de hongos filamentosos conocidos con potencial de aplicación en la degradación de la biomasa, sin embargo, la optimización de las condiciones de cultivo es necesaria para lograr la viabilidad económica.
https://doi.org/10.15517/rbt.v66i1.27768
PDF (English)
HTML (English)

Citas

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728.

Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion Management, 52, 858-875.

Baldrian P., Voříšková J., Dobiášová P., Merhautová V., Lisá, L., & Valášková, V. (2011). Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil, 338, 111-125.

Barbosa, R. N., Bezerra, J. D. P., Costa, P. M. O., Lima-Júnior, N. C., Galvão, I. R. G. A. S., Santos-Júnior, A. A., Fernandes, M. J., Souza-Motta, C. M., & Oliveira, N. T. (2016). Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: diversity in an area of environmental preservation. Revista de Biología Tropical, 64(1), 45-53.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. (2013).GenBank. Nucleic Acids Research, 41(Database issue), D36-42.

Bentubo, H. D. L., & Gompertz, O. F. (2014). Effects of temperature and incubation time on the in vitro expression of proteases, phospholipases, lipases and DNases by different species of Trichosporon. Springer Plus, 3, 377.

Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355-383.

Blackwell, M. (2011). The Fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany, 98, 426-438.

Camargo, O. A., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (2009). Métodos de análise química e física de solos do Instituto Agronômico de Campinas (Boletim técnico, 106). Ed. Campinas: IAC, 46-49.

Castro, A. P., Quirino, B. F., Papas, G. Jr., Kurokawa, A. S., Leonardecz, E., & Krüger, R. H. (2008). Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Archives of Microbiology, 190, 129-139.

Castro, A. P., Silva, M. R. S. S., Quirino, B. F., Bustamante, M. M. C., & Krüger, R. H. (2016). Microbial Diversity in Cerrado Biome (Neotropical Savanna) Soils. PLoSONE, 11(2), e0148785.

Colen, G., Junqueira, R. G., & Moraes-Santos, T. (2006). Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World Journal Microbiology Biotechnology, 22, 881-885.

Damaso, M. C. T., Terzi, S. C., Farias, A. X., Oliveira, A. C. P., Fraga, M. E., & Couri, S. (2012). Selection of Cellulolytic Fungi Isolated from Diverse Substrates. Brazilian Archives of Biology and Technology, 55, 513-520.

Frankland, J. C. (1998). Fungal succession - unravelling the unpredictable. Mycology Research, 102, 1-15.

Hankin, L. & Anagnostakis, S. L. (1975). The use of solid media for the detection of enzyme production by fungi. Mycologia, 6, 7597-607.

Hasan, F., Shah, A. A., & Hameed, A. (2006) Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235-251.

Hodásová, L., Jablonský, M., Škulcová, A., & Ház, A. (2015) Lignin, potential products and their market value. Wood Research, 60(6), 73-986.

Karlsson, S., Holmbom, B., Spetz, P., Mustranta, A., & Buchert, J. (2001). Reactivity of Trametes laccases with fatty and resin acids. Applied Microbiology and Biotechnology, 55, 317- 320.

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology, 57, 503-507.

Kathiresan, K. (2001) Polythene and Plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical, 51(3), 629- 634.

Klemm D., Heublein B., Fink H., & Bohn A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewante Chemie International Edition English, 44(22), 358-93.

Korkama-Rajala, T., Mueller, M. M., & Pennanen, T. (2008). Decomposition and fungi of needle litter from slow and fast-growing Norway spruce (Piceaabies) clones. Microbial Ecology, 56, 76-89.

Kouker, G., & Jaeger, K. E. (1987). Specific and sensitive plate assay for bacterial lipases. Applied Environmental Microbiology, 53, 211-213.

Lange, L., Bech, L., Busk, P. K., Grell, M. N., Huang, Y., Lange, M., Linde, T., (…), & Tong, X. (2012). The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus, 3, 87-92.

Larrondo, L. F., Salas, L., Melo, F., Vicuña, R., & Cullen, D. (2003) A Novel Extracellular Multicopper Oxidase from Phanerochaete chrysosporium with Ferroxidase Activity. Applied Environmental Microbiology, 69, 6257-6263.

Linsingen, L., Sonehara, J. S., Uhlmann, A., & Cervi, A. (2006) Composição florística do Parque Estadual do Cerrado de Jaguariaíva, Paraná, Brasil. Acta Biológica Paranaense, 35,197-232.

Lopes, M. B., Soden, A., Martens, A., Henschke, P. A., & Landridge, P. (1998). Differentiation and species identification of yeasts using PCR. International Journal of Systematic Bacteriology, 48, 79-286.

Maccheroni Jr., W., Araújo, W. L, & Azevedo, J. L. (2004) Ambient pH-regulated enzyme secretion endophytic and pathogenic isolate of the fungal genus Colletotrichum. Scentia Agricola, 61, 298-302.

Maia, L. C., Carvalho Jr, A. A., Cavalcanti, L. H., Gugliotta, A. M., Drechsler-Santos, E. R., Santiago, A. L. M. A., Cáceres, M. E., (...) & da Silva, V. F. (2015). Diversity of Brazilian Fungi. Rodriguésia, 66, 1033-1045.

Mandeel, Q. A., Al-Laith, A. A., & Mohamed, S. A. (2005) Cultivation of oyster muhsrooms (Pleurotus sp.) on various lignocellulosic wastes. World Journal Microbiology Biotechnology, 21, 601-607.

Martínez A. T., Speranza M., Ruiz-Dueñas F. J., Ferreira P., Camarero S., Guillén F., Martínez, M. J., Gutiérrez, A., & del Río, J. C. (2005). Biodegradation of lignocellulosics: microbial, chemical and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195-204.

Naz, S., & Jadhav, S. K. (2015). Studies of the estimation of lipase production capability of some fungal species and their application in oil spillage degradation. International Journal of Science and Research (IJSR), 4, 2154-2159.

Nogueira-Melo, G. S., Santos, P. J. P., & Gibertoni, T. B. (2014). The community structure of macroscopic basidiomycetes (Fungi) in Brazilian mangroves influenced by temporal and spatial variations. Revista de Biología Tropical, 62(4), 1587-1595.

Oliveira, J. M. P. F., & Graaff, L. H. (2011) Proteomics of industrial fungi: trends and insights for biotechnology. Applied Microbiology Biotechnology, 89, 225-237.

Oliveira-Filho, A. T., & Ratter, J. A. (2002).Vegetation physiognomies and woody flora of the Cerrado biome. In P. S. Oliveira & R. J. Marquis (Eds.), The Cerrados of Brazil (pp. 91-120). New York: Columbia University Press.

Parkinson D., Gray T. R. G., & Williams, S. T. (1971). Methods for studying the ecology of soil microorganisms. Oxford: Blackwell Scientific Publications.

Porras-Alfaro, A., Herrera, J., Natvig, D. O., Lipinski, K., & Sinsabaugh, R. L. (2011). Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia, 103(1), 10-21.

Pozdnyakova, N. N. (2012). Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons. Biotechnology Research International, 2012, 243.

Silva, G. A., Bernardi, T. L., Schaker, P. D. C., Menegotto, M., & Valente, P. (2012) Rapid Yeast DNA Extraction by Boiling and Freeze-Thawing without using chemical reagents and DNA Purification. Brazilian Archives of Biology and Technology, 55(2), 319-327.

Singh, R., Gupta, N., Goswami, V. K., & Gupta, R. (2006). A simple activity staining protocol for lipases and esterases. Applied Microbiology and Biotechnology, 70, 679-682.

Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Genetics, 9, 433-443.

Trancoso, R., Sano, E. E., & Meneses, P. R. (2015). The spectral changes of deforestation in the Brazilian tropical savanna. Environmental Monitoring and Assessment, 187, 41-45.

Valencia, E. Y., & Chambergo, F. S. (2013). Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Genetics Biology, 60, 9-18.

Vieira, M. L. A., Johann, S., Hughes, F. M., Rosa, C. A., & Rosa, L. H. (2014). The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharistrimera (Asteraceae) from the Brazilian savanna. Canadian Journal of Microbiology, 60, 847-856.

Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme Research, doi: 10.1155/2014/163242

Vorísková, J., & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME Journal, 7, 477-486.

Zhang, X. F., Zhao, L., Xu S. J. Jr., Liu, Y. Z., Liu, H. Y., & Cheng G. D. (2012) Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 114, 1054-65.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2018 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.