Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Modern coffee agroecosystems and their relationship with the conservation of butterflies in fragmented landscapes
Volumen 66 Número Regular Marzo 2018
PDF (Español (España))
HTML (Español (España))

Supplementary Files

Carta el editor (Español (España))

Keywords

agroforestry systems
coffee matrix
guilds
habitat preferences
indicator species
Papilionoidea
especies indicadoras
gremios
matriz de cafetales
Papilionoidea
preferencias de hábitat
sistemas agroforestales

How to Cite

Pérez-García, O., Benjamin, T. J., & Tobar, D. E. (2018). Modern coffee agroecosystems and their relationship with the conservation of butterflies in fragmented landscapes. Revista De Biología Tropical, 66(1), 394–402. https://doi.org/10.15517/rbt.v66i1.29013

Abstract

Land use change by the intensification of agriculture contributes to tropical forest fragmentation and biodiversity loss. In this sense, in comparison with traditional agroforestry systems (AFS), modern AFS are considered irrelevant for the conservation of biodiversity of tropical forest fragments. However, there is an increasing trend toward the establishment of different types of modern AFS. Owing to the sensitivity to environmental changes, we evaluated the biodiversity of butterflies in AFS with Coffea arabica and Erythrina poeppigiana (CP), and intermixed with Musa spp. (CPM) or Cordia alliodora (the only native species of AFS) (CPL), as well as premontane very humid forest fragments in the Volcánica Central-Talamanca Biological Corridor, Costa Rica. In six representative sites of each system we set up three parallel 80 m line-transects, separated by a distance of 25 m. Each coffee farm and forest fragment (FR) was surveyed during 1.5 hours to record butterflies. All sites were sampled once a month from May to July 2007. We obtained 4.5 hours of sampling/site, and 27 hours of sampling/habitat. Both CP and CPM together had a butterflies’ species composition which differed from CPL and FR. The indicator species of both CP and CPM together were Hermeuptychia hermes and Anartia jatrophae which are typical of open areas. CPL resulted with the species of secondary forests Heliconius erato petiverana and Pareuptychia ocirrhoe as indicators. In contrast, FR resulted with several indicator species typical of closed canopy forests such as Pierella helvina incanescens, Caligo eurilochus, and Morpho peleides limpida. Moreover, the richness of species was similar among coffee AFS. Furthermore, the richness of species of each coffee AFS was lower in comparison with FR. However, among coffee AFS, CPL harbored higher diversity (Exp(H’)) of forest butterflies than CP. Also, CPM was higher in abundance of frugivorous butterflies in relation with CP and CPL. In fragmented forests, coffee farms with exotic shade species combined at least with a native tree or fruit species, can be a better habitat for forest butterflies than those dominated by an exotic monospecific shade.
https://doi.org/10.15517/rbt.v66i1.29013
PDF (Español (España))
HTML (Español (España))

References

Bonebrake, T. C., Ponisio, L. C., Boggs, C. L., & Ehrlich, P. R. (2010). More than just indicators: A review of tropical butterfly ecology and conservation. Biological Conservation, 143(8), 1831-1841.

Caldas, A., & Robbins, R. K. (2003). Modified pollard transects for assessing tropical butterfly abundance and diversity. Biological Conservation, 110(2), 211-219.

Canet, L. (2003). Ficha técnica del corredor biológico Turrialba-Jiménez. Costa Rica: Escuela de Ciencias Ambientales.

Carmer, S. G., & Swanson, M. R. (1973). An evaluation of ten pairwise multiple comparison procedures by Monte Carlo methods. Journal of the American Statistical Association, 68(341), 66-74.

Chacón, I., & Montero, J. (2007). Mariposas de Costa Rica. Santo Domingo de Heredia, Costa Rica: INBIO.

Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148-159.

Colwell, R. K. (2013). EstimateS Version 9.1: Statistical estimation of species richness and shared species from samples. Recuperado de http:viceroy.eeb.uconn.edu/estimates

De Beenhouwer, M., Aerts, R., & Honnay, O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems and Environment, 175, 1-7.

De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: Indices and statistical inference. R Package Version 1.7.1. Recuperado de http://cran.r-project.org/web/packages/indicspecies/index.html

DeVries, P. J. (1987). The butterflies of Costa Rica and their natural history. Volume I: Papilionidae, Pieridae, Nymphalidae. New Jersey: Princeton University Press.

DeVries, P. J. (1997). The butterflies of Costa Rica and their natural history. Volume II: Riodinidae. New Jersey: Princeton University Press.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2013). InfoStat Version 2013. Grupo InfoStat-Universidad Nacional de Córdoba, Argentina. Recuperado de http://www.infostat.com.ar

Dobrovolski, R., Diniz-Filho, J. A. F., Loyola, R. D., & De Marco Júnior, P. (2011). Agricultural expansion and the fate of global conservation priorities. Biodiversity and Conservation, 20 (11), 2445-2459.

Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345-366.

Finkbeiner, S. D. (2014). Communal roosting in Heliconius butterflies (Nymphalidae): Roost recruitment, establishment, fidelity, and resource use trends based on age and sex. Journal of the Lepidopterists’ Society, 68(1), 10-16.

Florian, E. M. (2005). Tropical bird assemblages in coffee agroforestry systems: Exploring the relationships between landscape context, structural complexity and bird communities in the Turrialba-Jiménez Biological Corridor, Costa Rica. (Tesis de Maestría). Recuperado de http://repositorio.bibliotecaorton.catie.ac.cr/handle/11554/1

Francesconi, W., Nair, P. K. R., Levey, D. J., Daniels, J., & Cullen, L. (2013). Butterfly distribution in fragmented landscapes containing agroforestry practices in Southeastern Brazil. Agroforestry Systems, 87(6), 1321-1338.

Horner-Devine, M. C., Daily, G. C., & Ehrlich P. R. (2003). Countryside biogeography of tropical butterflies. Conservation Biology, 17(1), 168-177.

Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31(3), 264-323.

Jha, S., Bacon, C., Philpott, S., Mendez, V., Laderach, P., & Rice, R. (2014). Shade coffee: Update on a disappearing refuge for biodiversity. Bioscience 64(5), 416-428.

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363-375.

Kremen, C. (2015). Reframing the land-sparing/land-sharing debate for biodiversity conservation. Annals of the New York Academy of Sciences, 1355, 52-76.

Mas, A. H., & Dietsch, T. V. (2003). An index of management intensity for coffee agroecosystems to evaluate butterfly species richness. Ecological Applications, 13(5), 1491-1501.

Munyuli, M. B. T. (2013). Drivers of species richness and abundance of butterflies in coffee-banana agroforests in Uganda. International Journal of Biodiversity Science, Ecosystem Services & Management, 9(4), 298-310.

Muriel, S. B., & Kattan, G. H. (2009). Effects of patch size and type of coffee matrix on Ithomiine butterfly diversity and dispersal in cloud‐forest fragments. Conservation Biology, 23(4), 948-956.

Murrieta, E. (2006). Caracterización de cobertura vegetal y propuesta de una red de conectividad ecológica en el Corredor Biológico Volcánica Central-Talamanca, Costa Rica. (Tesis de Maestría). Recuperado de http://orton.catie.ac.cr/repdoc/A0739e/A0739e.pdf

Myers, N., Mittermeier, R. A., Mittermeier, C. G., & da Fonseca, G. A. B. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.

Oksanen, J., Guillaume-Blanchet, F., Kindt, R., Legendre, P., Peter-R, M., O‟Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2016). Vegan: Community Ecology Package. R package version 2.3-5. Recuperado de http://CRAN.R-project.org/package=vegan

Perfecto, I., Mas, A., Dietsch, T., & Vandermeer, J. (2003). Conservation of biodiversity in coffee agroecosystems: A tri-taxa comparison in southern Mexico. Biodiversity and Conservation, 12(6), 1239-1252.

R Development Core Team. (2013). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Recuperado de http://www.R-project.org

Soberón, J. M., & Llorente J. B. (1993). The use of species accumulation functions for the prediction of species richness. Conservation Biology, 7, 480-488.

Somarriba, E., Harvey, C. A., Samper, M., Anthony, F., González, J., Staver, C., & Rice, R. A. (2004). Biodiversity conservation in neotropical coffee (Coffea arabica) plantations. En G. Schroth, G. A. B. da Fonseca, C. A. Harvey, C. Gascon, H. L. Vasconcelos, & A. M. N. Izac (Eds.). Agroforestry and biodiversity conservation in tropical landscapes (p. 198-226). Washington, DC: Island Press.

Tully, K. L., Wood, S. A., & Lawrence, D. (2013). Fertilizer type and species composition affect leachate nutrient concentrations in coffee agroecosystems. Agroforestry Systems 87(5), 1083-1100.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.