Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Fuerte efecto negativo de las lluvias diurnas sobre la actividad nocturna de una araña errante en la Amazonía Central
PDF (English)
HTML (English)

Archivos suplementarios

Untitled (English)
Untitled (English)
Untitled (English)

Palabras clave

Phoneutria reidyi
rainforest
behavior
censuses
venomous spiders
Phoneutria reidyi
selva tropical
comportamiento
censos
araña venenosa

Cómo citar

Queiroz, M., & Gasnier, T. (2017). Fuerte efecto negativo de las lluvias diurnas sobre la actividad nocturna de una araña errante en la Amazonía Central. Revista De Biología Tropical, 65(3), 1152–1160. https://doi.org/10.15517/rbt.v65i3.29435

Resumen

La lluvia es un fenómeno común en los bosques tropicales que influye en el comportamiento de muchos animales, sin embargo, se sabe poco sobre su efecto posterior en el comportamiento. Se investigó el efecto de la lluvia diurna sobre la actividad nocturna de la especie de araña errante Phoneutria reidyi en noches sin lluvia, durante un año en una plantación ubicada a 108 km de la ciudad de Manaus, con área de 80 m x 80 m y 105 palmeras y durante cuatro meses en un área de 80 m x 80 m en un fragmento de selva en Manaus. En cada noche entre 19:00 y 0:00, contamos a las arañas activas (encontradas fuera de refugios) buscando cuidadosamente en la vegetación y en el suelo, usando una linterna de cabeza. Las arañas no fueron capturadas para evitar el efecto de la perturbación, y fueron medidas acercándose una regla de calibrar a ellas. Se utilizó un índice para medir el efecto de la lluvia diurna (ELD), que fue el porcentaje de cambio en el número de arañas activas en una noche después de una lluvia diurna considerando el 100 % el número de arañas activas en la noche anterior o siguiente, sin lluvia durante el día. Este enfoque pareado se utilizó para evitar sesgo estacional e incluyó 15 pares de noches en la plantación y 15 pares en la selva. Se contó un total de 2 243 arañas activas. El número de arañas activas fue siempre menor en las noches después de la lluvia diurna, con una reducción media del 53,4 %. La abundancia de arañas activas se redujo significativamente en ambas áreas después de una lluvia diurna, y el efecto no fue diferente entre las áreas. Las arañas mayores (en su mayoría adultos) redujeron su actividad (-62,8 %) más que las arañas menores (juveniles, -48,5 %). La cantidad de lluvia durante el día no tuvo efecto sobre la actividad nocturna, i. e., el efecto lluvias fuertes fue semejante al efecto de las débiles. La temperatura del aire no cambió significativamente en la noche después de lluvias diurnas. La variación de las lluvias durante el año parece tener un efecto débil o ausente en la abundancia de P. reidyi, que fue aproximadamente constante durante un año. Creemos que la humedad, que puede afectar las señales químicas de las presas, es la principal causa para reducir las arañas activas después de la lluvia, pero discutimos otras causas potenciales. Las arañas menores probablemente están más activas en condiciones menos favorables debido a la mayor necesidad de alimento para crecer. Si este efecto de la lluvia sobre el comportamiento es común para las arañas errantes, los eventos de lluvia pueden tener consecuencias importantes para toda la comunidad de artrópodos y pequeños vertebrados. Sugerimos que los estudios basados en la abundancia relativa de arañas deben tener en cuenta este efecto potencial en la colecta y análisis de datos.
https://doi.org/10.15517/rbt.v65i3.29435
PDF (English)
HTML (English)

Citas

Barth, F. G. (2002). Spider senses - technical perfection and biology. Zoology, 105, 271-285.

Barth, F. G., Seyfarth, E. A., Bleckmann, H., & Schüch, W. (1988). Spiders of the genus Cupiennius Simon 1891 (Araneae: Ctenidae). Oecologia, 77, 187-193.

Cardoso, J. L. C., França, F. O. S., Wen, F. H., Malaque, C. M. S., & Haddad-Jr, V. (2009). Animais Peçonhentos no Brasil: Biologia Clínica e Terapêutica dos Acidentes. 2ª Edição. São Paulo, Brasil: Sarvier.

Carvalho, L. S., Sebastion, N., Araújo, H. F. P., Dias, S. C., Venticinque, E., Brescovit, A. D., & Vasconcellos, A. (2015). Climatic variables do not directly predict spider richness and abundance in semiarid Caatinga vegetation, Brazil. Environmental Entomology, 44, 54-63.

Chai, Y. Q., & Wilgers, D. J. (2015). Effects of temperature and light levels on refuge use and activity in the wolf spider Rabidosa punctulata. Transactions of the Kansas Academy of Science, 118 (3-4), 194-200.

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia, Pennsylvania, USA: Society for Industrial and Applied Mathematics.

Gasnier, T. R., & Höfer, H. (2001). Patterns of abundance of four species of wandering spiders (Ctenidae: Ctenus) in a forest in central Amazonia. Journal of Arachnology, 29, 95-103.

Gasnier, T. R., Höfer, H., & Brescovit, A. D. (1995). Factors affecting the “activity density” of spiders on tree trunks in an Amazonian rainforest. Ecotropica, 12, 69-77.

Gibbons, J. W., & Bennet, D. H. (1974). Determination of Anuran Terrestrial Activity Patens by a Drift Fence Method. Copeia, 236-243.

Hazzi, N. A. (2014). Natural history of Phoneutria boliviensis (Araneae: Ctenidae): habitats, reproductive behavior, postembryonic devolopment and prey-wrapping. Journal of Arachnology, 42, 303-310.

Hilton, G. M., Ruxton, G. D., & Cresswell, W. (1999). Choice of foraging area with respect to predation risk in redshanks: The Effects of Weather and Predator Activity. Oikos, 87, 295-302.

Hölldobler, B., & Wilson, E. O. (1990). The ants. Massachusetts, USA: Cambridge.

Hothorn, T., Hornik, K., Mark, A., Wiel, V., & Zeileis, A. (2008). Implementing a Class of Permutation Tests: The coin Package. Journal of Statistical Software, 288, 1-23.

Jocqué, R., Samu, F., & Bird, T. (2005). Density of spiders (Araneae: Ctenidae) in Ivory Coast rainforests. Journal of Zoology, 266, 105-110.

Leisch, F. (2015). Bootstrap: Functions for the Book "An Introduction to the Bootstrap". R package version 2. Retrieved from https://CRAN.R-project.org/package=bootstrap

Lensing, J. R., Todd, S., & Wise, D. H. (2005). The impact of altered precipitation on spatial stratification and activity-densities of springtails (Collembola) and spiders (Araneae). Ecological Entomology, 30, 194-200.

Manly, B. F. J. (2007). Randomization, Bootstrap and Monte Carlos Methods in Biology. Boca Raton, FL, USA: Chapman & Hall.

Marcon, J. L., Crus, J., Menin, M., Carolino, O. T., & Gordo, M. (2012). Biodiversidade fragmentada na floresta do campus da Universidade Federal do Amazonas: Conhecimento Atual e Desafios para a Conservação. In J. L. Marcon, M. Menin, M. G. P. Araújo, & T. Hrbek. Biodiversidade Amazônica: Caracterização, Ecologia e Conservação. Manaus, Brasil: Editora da Universidade Federal do Amazonas.

Martins, R., & Bertani, R. (2007). The non-Amazonian species of the Brazilian wandering spiders of the genus Phoneutria Perty, 1833 (Araneae: Ctenidae), with the description of a new species. Zootaxa, 1526, 1-36.

Medeiros, L. G. S., Bandeira, A. G., & Martius, C. (1999). Termite swarming in the Northeastern Atlantic rain forest of Brazil. Studies on Neotropical Fauna and Environment, 34, 76-87.

Perty, M. (1833). Brasilianische Spinnen. In J. B. de Spix & F. F. Martius (Eds.), Delectus Animalium Articulatorum quae in itinere per brazilian ann. 1817 et 1820 colligerunt (pp. 191-209). Monachii.

Pickard-Cambridge, F. O. (1897). On cteniform spiders from the lower Amazons and other regions of North and South America. The Annals and Magazine of Natural History, 19, 52-106.

Portela, E., Willemar, R. H., & Gasnier, T. R. (2013). Soil type preference and the coexistence of two species of wandering spiders (Ctenus amphora and C. Crulsi: Ctenidae) in a rainforest in Central Amazonia. Journal of Arachnology, 41, 85-87.

Powell, B. E., Brightwell, R. J., & Silverman, J. (2009). Effect of an invasive and native ant on field population of the black citrus aphid (Hemiptera: Aphididae). Environmental Entomology, 38, 1618-1625.

Quinn, G. P., & Keough, M. J. (2003). Experimental design and data analysis for biologists. New York: Cambridge University Press.

R core development team. (2016). R: version 3.3.2. The R project for statistical computing, Vienna, Austria. Retrieved from https://www.r-project.org

Rego, F. N. A. A., Venticinque, E. M., & Brescovit, A. D. (2005). Densidade de aranhas errantes (Ctenidae e Sparassidae, Araneae) em uma floresta fragmentada. Biota Neotropica, 5(1a), 45-52.

Romero, G. Q., & Vasconcellos-Neto, J. (2003). Natural history of Misumenops argenteus (Thomisidae): seasonality and diet on Trichogoniopsis adenantha (Asteraceae). Journal of Arachnology, 31, 297-304.

Simó, M., & Brescovit, A. D. (2001). Revision and cladistic analysis of the neotropical spider genus Phoneutria Perty, 1833 (Araneae: Ctenidae), with notes on related Ctenidae. Bulletin of British Arachnological Society, 122, 67-82.

Spiller, D. A., & Schoener, T. W. (1995). Long-term variation in the effect of lizards on spider density is linked to rainfall. Oecologia, 103, 133-139.

Stamps, J. A. (1976). Rainfall, activity and social behavior in the lizard Anolis aeneus. Animal Behavior, 24, 603-608.

Teixeira, L. T., & Coutinho, E. S. (2002). Hábito alimentar de Proceratophrys boiei (Wied) (Amphibia, Anura, Leptodactylidae) em Santa Teresa, Espírito Santo, sudeste do Brasil. Boletim do Museu Biologia Mello Leitão, 14, 13-20.

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., & Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47, 5-14.

Torres-Sanchez, M. P., & Gasnier, T. R. (2010). Patterns of abundance, habitat use and body size structure of Phoneutria reidyi and P. fera (Araneae: Ctenidae) in a Central Amazonian rainforest. Journal of Arachnology, 38, 433-440.

Wallace, R. B. (2001). Diurnal activity budgets of black spider monkeys Ateles chamek, in a Southern Amazonian Tropical forest. Neotropical Primates, 9, 101-107.

Wilder, S. M., Devito, J., Persons, M. H., & Rypstra, A. L. (2005). The effects of moisture and heat on the efficacy of chemical cues used in predator detection by Pardosa milvina (Araneae: Lycosidae). Journal Arachnology, 33, 857-861.

Williams, S. C. (1987). Scorpion bionomics. Annual Review of Entomology, 32, 275-95.

Wise, D. H. (1993). Spiders in Ecological Webs. New York: Cambridge University Press.

Zaller, J. G., Simmer, L., Santer, N., Tataw, J. T., Formayer, H., Murer, E., Hösch, J., & Baumgarten, A. (2014). Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Frontiers in Environmental Science, 2, 44.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.