Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Interactions between different biological forms of aquatic macrophytes in a eutrophic tropical reservoir in Northeastern Brazil
PDF
HTML

Keywords

aquatic plants
biomass
nurse plants
relative interaction index
seasonality.
plantas acuáticas
biomasa
efecto nodriza
índice relativo de interacciones
estacionalidad.

How to Cite

Lycarião, T. A., & Dantas, Ênio W. (2017). Interactions between different biological forms of aquatic macrophytes in a eutrophic tropical reservoir in Northeastern Brazil. Revista De Biología Tropical, 65(3), 1095–1104. https://doi.org/10.15517/rbt.v65i3.29441

Abstract

The aquatic plants and biological processes have different interactions and their knowledge may contribute to the understanding of environmental dynamics in wetlands. The aim of this study was to report the type of interactions that different biological forms of macrophytes stand in the eutrophic tropical reservoir of Penha reservoir, Northeastern Brazil. Data collection was captured every two months from October 2009 to October 2010, considering the hydrological cycle in one-year period. For this, twelve perpendicular transects (separated by 10 m) at the reservoir’s water edge were defined; each transect had two plots of 625 cm² (25 x 25 cm, separated by one meter) from which samples were obtained. Plants were collected and transported in identified plastic bags for subsequent quantification of the dry weight biomass; additionally, pressed samples were made in the field for identification purposes. The relative interaction index (RII) was used to identify the existence of positive and/or negative interactions between the biomass of the biological forms of aquatic plants. Student’s t-tests were used to analyze variations in the abiotic data and biomass over time, and to determine differences between the dry and rainy seasons. Pearson and Spearman correlation coefficients were calculated to determine correlations between the biological forms and the biomass of the macrophytes, as well as environmental variables and RII. In the dry season, the environment was mainly composed of floating macrophytes (1 013.98 g/m²), with mats of submerged macrophytes (98.18 g/m²) that demonstrated a range of positive (RII= 1.0) to negative (RII= -0.2) interactions. The biomass of emergent macrophytes increased throughout the dry season (4.87 to 106.91 g/m²) due to the nurse plant effect that served as a substratum (RII= 1.0). During the rainy season the biomass of submerged macrophytes was reduced by 97 % due to direct and indirect relationships (RII= -1.0) to other macrophytes. Rainfall and emergent plants contributed to a reduction in the biomass of floating macrophytes (19.16 g/m²). The emergence of a third group of plants (emergent) lead floating plants to occupy other areas and excluded submerged plants. Overall, the interactions among plants within ecosystems were not definite due to stand composition and seasonality.

https://doi.org/10.15517/rbt.v65i3.29441
PDF
HTML

References

Aloo, P., Ojwang, W., Omondi, R., Nijiru, J. M., & Oyugi, D. (2013). A review of the impacts of invasive aquatic weeds on the bio-diversity of some tropical water bodies with special reference to Lake Victoria (Kenya). Biodiversity Journal, 4(4), 471-482.

Amarasekare, P. (2002). Interference competition and species coexistence. Proceedings of the Royal Society Biological Science, 269(1509), 2541-2550.

Armas, C., Ordiales, R., & Pugnaire, F. I. (2004). Measuring Plant Interactions: a New Comparative Index. Ecology, 85(10), 2682-2686.

Barko, J. W., & Smart, R. M. (1983). Effects of organic matter additions to sediment in the growth of aquatic plants. Journal of Ecology, 71, 161-175.

Bertness, M. D., & Callaway, R. M. (1994). Positive interactions in communities. Ecology and Evolution, 9(5), 191-193.

Beyruth, Z. (1992). Macrófitas Aquáticas de um Lago Marginal ao Rio Embu – Mirim. Revista Saúde Pública, 26(4), 272-282.

Bianchini Jr., I. J. (2003). Modelos de crescimento e decomposição de macrófitas aquáticas. In S. M. Thomaz & L. M. Bini (Eds.), Ecologia e manejo de macrófitas aquáticas (pp. 85-126). Maringá, BR: Eduem.

Bianchini Jr., I., Cunha-Santino, M. B., Milan, J. A. M., Rodrigues, C. J., & Dias, J. H. P. (2010). Growth of hydrilla verticillata (L.f.) royle under controlled conditions. Hydrobiologia, 644(1), 301-312.

Blindow, I., Hargeby, A., & Hilt, S. (2014). Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophytes and angiosperm dominance. Hydrobiologia, 737(1), 99-110.

Brönmark, C., Rundle, S. D., & Erlandsson, A. (1991). Interactions between freshwater snails and tadpoles: Competition and facilitation. Oecologia, 87(1), 8-18.

Bulleri, F., Bruno, J. F., & Benneditti-Cecchi, L. (2008). Beyond competition: Incorporating positive interactions between species to predict ecosystem invisibility. PLoS Biology, 6(6), e162.

Callaway, R. M. (2007). Positive interactions and interdependence in plant communities. The Netherlands, NL: Springer.

Callaway, R. M., & Walker, L. R. (1997). Competition and Facilitation: a synthetic approach to interactions in plant communities. Ecology, 78(7), 1958-1965.

Camargo, A. F. M., Henry-Silva, G. G., & Pezzato, M. M. (2003). Crescimento e produção primária de macrófitas aquáticas em zonas litorâneas. In R. Henry (Eds.), Ecótonos nas interfaces dos ecossistemas aquáticos (pp. 213-232). São Carlos, BR: Fundibio/ Rima.

Cardinale, B. J., Palmer, M. A., & Collins, S. L. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 415(6870), 426-429.

Connell, J. H. (1990). On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist, 122, 661-696.

Domingues, F. D., Starling, F. L. R. M., Nova, C. C., Loureiro, B. R., Souza, L. C., & Branco, W. C. (2016). The control of floating macrophytes by grass carp in net cages: experiments in two tropical hydroelectric reservoirs. Aquaculture Research.

Neto, S. V. C., Senna, C. S. F., Tostes, L. C. L., & Silva, S. R. M. (2007). Macrófitas aquáticas das regiões dos lagos do Amapá, Brasil. Revista Brasileira Biociências, 5(S2), 618-620.

Espinar, J. L., García, L. V., Murillo, P. G., & Toja, J. (2002). Submerged macrophyte zonation in a Mediterranean salt marsh: A facilitation effect from established helophytes? Journal of Vegetation Science, 13(6), 831-840.

Esteves, F. A. (2011). Fundamentos de Limnologia. Rio de Janeiro, BR: Interciência.

Gómez-Aparicio, L., Zamora, R., Castro, J., & Hódar, J. A. (2008). Facilitation of tree saplings by nurse: Microhabitat amelioration or protection against herbivores? Journal of Vegetation Science, 19(2), 161-172.

Henry-Silva, G. G., Moura, R. S. T., & Dantas, L. L. O. (2010). Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems. Acta Limnologica Brasiliensia, 22(2), 147-156.

Holmgren, M., Scheffer, M., & Huston, M. A. (1997). The interplay of facilitation and competition in plant communities. Ecology, 78(7), 1966-1975.

Kiersch, B., Mühleck, R., & Gunkel, G. (2004). Las macrófitas de algunos lagos alto-andinos Del Ecuador y su bajo potencial como bioindicadores de eutrofización. Revista de Biología Tropical, 52(4), 829-837.

Le Bagousse-pinguet, Y. L. E., Liancourt, P., & Straile, D. (2012). Indirect facilitation promotes macrophytes survival and growth in freshwater ecosystems threatened by eutrophication. Journal of Ecology, 100(2), 530-538.

Lima, C. T., Giulietti, A. M., & Santos, F. A. R. (2012). Flora da Bahia: Cabombaceae. Sitientibus série Ciências Biológicas, 12(1), 61-68.

Lolis, S. F., & Thomaz, S. M. (2011). Monitoramento da composição específica da comunidade de macrófitas aquáticas no reservatório Luis Eduardo Magalhães. Planta Daninha, 29(2), 247-258.

Macek, P., & Rejmankova, E. (2007). Response of emergent macrophytes to experimental nutrient and salinity additions. Functional Ecology, 21(3), 478-488.

Matias, L. Q., Amado, E. R., & Nunes, E. P. (2003). Macrófitas aquáticas da lagoa de Jijoca de Jericoacoara, Ceará, Brasil. Acta Botanica Brasilica, 17(4), 623-631.

McCreary, N. J. (1991). Competition as a mechanism of submersed macrophyte community structure. Aquatic Botany, 41, 177-193.

Meerhoff, M., Mazzeo, N., Moss, B., & Rodríguez-Gallego, L. (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology, 37(4), 377-391.

Mormul, R. P., Ferreira, F. A., Michelan, T. S., Carvalho, P., Silveira, M. J., & Thomaz, S. M. (2010). Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil. Revista de Biología Troprical, 58(4), 1437-1452.

Ngari, A. N., Kinyamario, J. I., Ntiba, M. J., & MavutI, K. M. (2009). Factors affecting abundance and distribution of submerged and floating macrophyes in Lake Naivasha, Kenya. African Journal of Ecology, 47, 32-39.

Nogueira, F. B. M., & Esteves, F. A. (1990). Variação temporal da biomassa de duas espécies de macrófitas aquáticas em uma lagoa do rio Mogi-Guaçu (SP). Acta Limnologica Brasiliensia, 3(2), 617-632.

O’Farrell, I., Pinto-Tezanos, I. de, Rodríguez, P., Chaparro, G., & Pizarro, H. (2009). Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology, 54(2), 363-375.

Oliveira, N. M. B, Sampaio, E. V. S. B., Pereira, S. M. B., & Moura-Júnior, A. M. (2005). Capacidade de regeneração de Egeria densa nos reservatórios de Paulo Afonso, BA. Planta Daninha, 23(2), 363-369.

Pompêo, M. L. M., & Moschini-Carlos, V. (2003). Macrófitas aquáticas e perifíton: aspectos ecológicos e metodológicos. São Carlos, BR: RiMa.

Pott, V. J., & Pott, A. (2000). Plantas aquáticas do Pantanal. Brasilía, BR: EMBRAPA Comunicação para transferência de Tecnologia.

R Development Core Team. (2014). A language and environment for statistical computing. R Foundatition for statistical computing, Vienna, Austria. Retrieved from http://www.R-project.org/.

Rocha, D. C., & Martins, D. (2011). Levantamento de plantas daninhas aquáticas no reservatório de Alagados, Ponta Grossa, PR. Planta Daninha, 29, 237-246.

Scheffer, M., & Van Nes, E. H. (2007). Shallow lakes thory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584(1), 455-466.

Sousa, D. J. L., & Matias, L. Q. (2013). A família Nymphaeaceae no estado do Ceará, Brasil. Rodriguésia, 64(1), 49-59.

Sousa, W. T. Z., Thomaz, S. M., & Murphy, K. J. (2011). Drivers of aquatic macrophytes community structure in a Neotropical riverine lake. Acta Oecologica, 37(5), 462-475.

Thomaz, S. M. (2006). Fatores que afetam a distribuição e o desenvolvimento de macrófitas aquáticas em reservatório: uma análise em diferentes escalas. In M. G., Nogueira, R., Henry, & A. Jorcin (Eds.), Ecologia de reservatório: impactos potenciais, ações de manejo e sistema cascata (pp. 165-181). São Carlos, BR: Rima.

van der Heide, T., Roijackers, R. M. M. R., van Nes, E. H., & Peeters, E. T. H. M. (2006). A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquatic Botany, 84(2), 171-175.

Wetzel, R. G. (2001). Limnology: lake and river ecosystems. San Diego, CA: Academic Press.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.