Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Éxito de anidación de Turdus grayi (Passeriformes: Turdidae) en el Centro Ecológico Recreativo “El Zapotal”, Chiapas, México.
PDF
HTML

Archivos suplementarios

Untitled

Palabras clave

nesting success
nest depredation
nesting site characteristics
scale decoupling
logistic regression.
éxito de anidación
depredación de nidos
características del sitio de anidación
desacoplamiento de escalas
regresión.

Cómo citar

Chanona Pérez, A. K., Castellanos Albores, J., González Jaramillo, M., & Rangel Salazar, J. L. (2017). Éxito de anidación de Turdus grayi (Passeriformes: Turdidae) en el Centro Ecológico Recreativo “El Zapotal”, Chiapas, México. Revista De Biología Tropical, 65(3), 925–938. https://doi.org/10.15517/rbt.v65i3.29445

Resumen

El éxito de anidación ha sido un indicador para evaluar los cambios ambientales que afectan el éxito reproductivo de aves, ya que permite analizar cambios que ocurren en la natalidad. En el presente estudio analizamos el éxito de anidación de Turdus grayi en el Centro Ecológico Recreativo “El Zapotal”, Chiapas. Durante la temporada reproductiva del 2015, evaluamos las características del hábitat, presentes en los sitios de anidación a través de la búsqueda intensiva de nidos. Localizamos 56 nidos de los cuales, 27 (48.2 %) fueron exitosos y 29 (51.7 %) fueron fallidos. La mayoría de los nidos no exitosos (19) fueron depredados mientras que 8 (27.6 %) fueron abandonados y 2 (6.9 %) parasitados. El éxito de anidación fue de 46 %. La depredación fue el principal factor del fallo de los nidos. La incubación fue la etapa más susceptible a la depredación. Identificamos que las variables del sitio de anidación operaron a dos escalas espaciales: local y parche del nido. A través del análisis de regresión logística binaria se obtuvo un modelo para cada escala, el cual predijo qué variables incrementaron la probabilidad de éxito de anidación. Además realizamos un análisis de regresión logística multivariante para descartar posibles interacciones entre las variables. A escala local encontramos que la altura del nido a un intervalo de 4.2-5.1 m de altura incrementó el éxito del nido, mientras a escala parche del nido, la probabilidad de éxito de anidación fue mayor en los sitios con una densidad ≥ 12 árboles. Los análisis indicaron que la probabilidad de éxito de anidación no presentó una relación entre la escala local y parche del nido. Lo que sugiere un desacoplamiento de escalas y mecanismos. Por lo cual los cambios que ocurren en las variables que intervienen a escala local parecen no interferir en la escala de parche del nido. Los resultados obtenidos mostraron que la variación en las características de los sitios de anidación podría influir en la depredación además de que la depredación podría haberse presentado de manera aleatoria ya que los nidos que presentaron probabilidades medias y altas de ser exitosos fallaron por esta causa. De este modo, con el fin de comprender los factores, mecanismos y características de historia de vida que influyen en el éxito de anidación, sugerimos que además de las variables ambientales, los estudios futuros deberán considerar el comportamiento de las aves anidantes.

https://doi.org/10.15517/rbt.v65i3.29445
PDF
HTML

Citas

Aguayo, C. M., & Lora, M. E. (2007). Cómo hacer una Regresión Logística binaria “paso a paso” (II): análisis multivariante. Recuperado de: http://www.fabis.org/html/archivos/docuwe/regresion_logistica_2r.pdf

Aguilar, T. M., Días, R. I., Oliveira, A. C., & Macedo, R. H. (2008). Nest-site selection by Blue-black Grassquits in a Neotropical savanna: do choices influence nest success. Journal of Field Ornithology, 79, 24-31.

Álvarez, J. G., Medellín, A. R., Olivers de Ita, A., Gómez de Silva, H., & Sánchez, O. (2008). Animales exóticos en México: una amenaza para la biodiversidad. México, D. F: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Instituto de Ecología, UNAM, Secretaría de Medio Ambiente y Recursos Naturales.

Anich, M. N., Worland, M., & Martin, J. K. (2013). Nest-site selection, nest survival, productivity and survival of Spruce Grouse in Wisconsin. The Wilson Journal of Ornithology, 125(3), 570-582.

Baicich, P. J., & Harrison, C. J. O. (2005). Nests, eggs, and nestlings of North American birds. Nueva Jersey, USA: Princenton University Press.

Becker, H. P., Dittmann, T., Ludwigs, D. J., Limmer, B., Ludwing, C. S., Bauch, C., … Wendeln, H. (2008). Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird. PNAS, 105(34), 12349-12352.

Beissinger, R. S., & Westphal, I. M. (1998). On the use of demographic models of population viability in endangered species management. Journal of Wildlife Management, 62(3), 821-841.

Bibby, J. C., Burgess, N. D., & Hill, A. D. (1992). Bird census techniques. London, England: Academic Press.

Borgmann, L. K., & Conway, J. C. (2015). The nest-concealment hypothesis: new insights from a comparative analysis. The Wilson Journal of Ornithology, 127(4), 646-660.

Chalfoun, A. D., & Schmidit, K. A. (2012). Adaptative breeding-habitat selection: Is it for the birds? The Auk, 129(4), 589-599.

Chanona, A. K. (2013). La red de anidación de aves en la Reserva El Zapotal Chiapas, México (Tesis inédita de licenciatura). Universidad de Ciencias y Artes de Chiapas, Chiapas, México.

Chase, K. M. (2002). Nest site selection and nest success in a song sparrow population: the significance of spatial variation. The Condor, 104, 103-116.

Clark, R. G., & Shutler, D. (1999). Avian habitat selection: pattern from process in nest-site use by ducks? Ecology, 80, 272-287.

Conway, C., & Martin, T. (2000). Evolution of passerine incubation behavior: influence of food, temperature and nest predation. Evolution, 54(2), 670-685.

Ditchkoff, S., Saalfeld, S., & Gibson, C. (2006). Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosystems, 9, 5-12.

Dyrcz, A. (1983). Breeding ecology of the Clay-colored robin Turdus grayi in lowland Panama. IBIS, 125(3), 287-304.

Fernández, M. Y. (2002). Áreas naturales en ciudades y su conservación: El caso de la avifauna de El Zapotal, Tuxtla Gutiérrez, Chiapas (Tesis inédita de maestría). El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México.

Fernández, M. Y. (2010). Percepciones ambientales sobre una reserva ecológica urbana, El Zapotal, Tuxtla Gutiérrez, Chiapas (Tesis inédita de doctorado). El Colegio de la Frontera Sur, Villahermosa, Tabasco, México.

García, D., Chacoff, N. P., Herrera, J. M., & Amico, G. C. (2009). La escala espacial de las interacciones planta-animal. En R. Medel, M. A. Aizen, & R. Zamora (Eds.), Ecología y evolución de interacciones planta-animal: conceptos y aplicaciones (pp. 133- 156). Santiago, Chile: Editorial Universitaria.

Guisande, C., Vaamonde, A., & Barreiro, A. (2011). Tratamiento de datos con R, STATISTICA Y SPPS. España: Ediciones Díaz de Santos.

Harrell, F. E., Lee, K. L., & Mark, D. B. (1996). Tutorial in biostatics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361-387.

Howell, S., & Webb, S. (1995). A guide to the birds of Mexico and northern Central America. New York, USA: Oxford University Press.

Jehle, G., Yackel-Adams, A. A., Savidge J. A., & Skagen, S. (2004). Nest survival estimation: a review of alternatives to the Mayfield estimator. The Condor, 106, 472-484.

Jordano, P., & Herrera, C. M. (1995). Shuffling the offspring: uncoupling and spatial discordance of multiple stages in vertebrate seed dispersal. Ecoscience, 2, 230-237.

Keeler, S. P., Yabsely, J. M., Gibss, J. E. S., McGraw, N. S., & Hernandez, M. S. (2012). A new Isopora species of passerines in the family Turdidae from Costa Rica. Journal of Parasitology, 98, 167-169.

King, S. R., Trutwin, J. J., Hunter, S. T., & Varner, M. D. (2013). Effects of environmental stressors on nest success of introduced birds. The Journal of Wildlife Management, 77(4), 842-854.

Knutson, M. G., Gray, B. R., & Meier, M. S. (2007). Comparing the effects of local, landscape, and temporal factors on forest bird nest survival using logistic-exposure models. Studies in Avian Biology, 34, 105-116.

Latif, Q., Heath, S. K., & Rotenberry, J. T. (2012). How avian nest site selection responds to predation risk: Testing an adaptive hypothesis. Journal of Animal Ecology, 81, 127-138.

Lack, D. (1968). Ecological adaptations for breeding in birds. Methuen, London: Champman and Hall.

Lindell, A. C., O’Connor, S. R., & Cohen, B. E. (2011). Nesting success of neotropical thrushes in coffee and pasture. The Wilson Journal of Ornithology, 123(3), 502-507.

Lomáscolo, B. S., Monmay, C., Malizia, A., & Martin, T. E. (2010). Flexibility in nest-site choice and nesting success of Turdus rufiventris (Turdidae) in a montane forest in northwestern Argentina. The Wilson Journal of Ornithology, 122(4), 674-680.

Martin, T. E. (1993). Nest predation and nest sites. BioScience, 43(8), 523-532.

Martin, T. E. (1995). Avian life history evolution in relation to nest sites, nest predation and food. Ecological Monographs, 65, 101-127.

Martin, T. E. (1998). Are microhabitat preferences of coexisting species under selection and adaptive? Ecology, 79(2), 656-670.

Martin, T. E., & Roper, J. (1988). Nest predation and nest site selection of a Western population of the Hermit Thrush. The Condor, 90, 51-57.

Mayfield, H. F. (1975). Suggests for calculating nest success. Wilson Bulletin, 87(4), 456-466.

Mérida, M. A. (2000). Cien años de evolución urbana en Tuxtla Gutiérrez, Chiapas (1892-1992) (Tesis inédita de maestría). Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, México.

Mikula, P., Hromada, M., Albrecht, T., & Tryjanowski, P. (2014). Nest site selection and breeding success in three Turdus thrush species coexisting in an urban environment. Acta Ornithologica, 49, 83-92.

Molina, A .A., Maldonado, R. C., Oliverás de Itá, A., & Rojas-Soto, R. O. (2008). Primer reporte de nidos depredados por la chachalaca vetula (Ortalis vetula). Huitzil, 9(2), 32-34.

Morton, E. (1971). Nest predation affecting the breeding season of the Clay-Colored Robin, a tropical song bird. Science, 171(3974), 920-921.

Newmark, D. W., & Stanley, R. T. (2011). Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. PNAS, 108(28), 11488-11493.

Nur, N., Holmes, A., & Geupel, G. (2004). Use of survival time analysis to analyze nesting success in birds: an example using loggerhead shrikes. The Condor, 106, 457-471.

Prange, S., Gehrt, S. D., & Wiggers, E. P. (2003). Demographic factors contributing to high raccoon densities in urban landscapes. Journal of Wildlife Management, 67(2), 324-333.

Ralph, C. J., Geoffrey, R., Pyle, M., Thomas, E., DeSante, D. F., & Milá, B. (1996). Manual de métodos de campo para el monitoreo de aves terrestres. Albany, California: Pacific Southwest Research Station.

Rangel-Salazar, J. L., Enríquez, P. L., & Will, T. (2005). Diversidad de Aves en Chiapas: prioridades de investigación para su conservación. En M. González-Espinosa, N. Ramírez-Marcial, & L. Ruíz-Montoya (Eds.), La Diversidad Biológica en Chiapas (pp. 265-296). México: Plaza y Valdés.

Rangel-Salazar, J. L., Martin, K., Marshall, P., & Elner, W. R. (2008). Influence of habitat variation, nest-site selection and parental behavior on breeding success of Ruddy-capped nightingale thrushes (Catharus frantzii) in Chiapas, México. The Auk, 125(2), 358-367.

Remes, V. (2005). Nest concealment and parental behavior interact in affecting nest survival in the Blackcap (Sylvia atricapilla): an experimental evaluation of the parental compensation hypothesis. Behavioral Ecology and Sociobiology, 58(3), 326-332.

Ricklefs, R. E. (1969). An Analysis of nesting mortality in birds. Smithsonian Contributions to Zoology, 9, 1-48.

Robinson, T. R., Robinson, W. D., & Edwards, E. C. (2000). Breeding ecology and nest-site selection of Song Wrens in central Panama. The Auk, 117, 345-354.

Rodewald, A. D. (2002). Nest predation in forested regions: landscape and edge effects. Journal of Wildlife Management, 66(3), 634-640.

Rodríguez-Ruíz, E. R., Garza-Torres, H. A., Ríos-Muñoz, C. A., & Navarro-Sigüenza, A. G. (2011). The geographical distribution of Blue-gray Tananger (Thraupis episcopus) through antropogenically modified habitats in Mexico. Revista Mexicana de Biodiversidad, 82, 989-996.

Schupp, E. W., & Fuentes, M. (1995). Spatial patterns of seed dispersal and the unification of plant population ecology. Ecoscience, 2, 267-275.

Stotz, D. F., Fitzpatrick, W. J., Parker III, A. T., & Moskovits, K. D. (1996). Neotropical birds: ecology and conservation. Chicago, Illionis: University of Chicago Press.

Török, J., & Tóth, L. (1988). Density dependence in reproduction of the collared flycatcher (Ficedula Albicollis) at high population levels. Journal of Animal Ecology, 57, 251-258.

Weidinger, K. (2002). Interactive effects of concealment, parental behavior and predators on the survival of open passerine nests. Journal of Animal Ecology, 71, 424-437.

Yen, F. C., Klass, E. E., & Kam, C. Y. (1996). Variation in nesting success of the America robin, Turdus migratorius. Zoological Studies, 35(3), 220-226.

Zhou, D., Zhou, C., Kong, X., & Deng, W. (2011). Nest-site selection and nesting success of Grey-Backed Thrusches in Northeast China. The Wilson Journal of Ornithology, 123(3), 492-501.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.