Resumen
La estructura de grupos funcionales del fitoplancton y la abundacia de especies varía de acuerdo con las condiciones ambientales. Este estudio investigó los estresores naturales y antropogénicos que afectan la biomasa de grupos funcionales de fitoplancton en un reservorio (el reservorio de Argemiro de Figueiredo) en una region semiárida de Brasil. La colecta de datos ocurrió entre agosto de 2007 y julio de 2009 de forma bimensual durante el primer año, y de forma mensual durante los últimos dos años. Estos se colectaron en tres sitios (PC: confluencia del río; PNC: cerca de cages; PD: sitio de presa). El análisis de las variables abióticas del agua incluyó: temperatura, transparencia, coeficiente de la atenuación vertical de la luz, oxígeno disuelto, pH, conductividad eléctrica, alcalinidad, nitrógeno inorgánico disuelto, y fósforo reactivo soluble. Las muestras de fitoplancton fueron colectada en una botellaVan Dorn, y fueron preservadas en lugol acético y fueron cuantificadas utilizando un microscopio invertido para determiner la densidad y la biomasa del fitoplancton, las especies identificadas fueron agrupadas en grupos funcionales. Los datos fueron explorados mediante un análisis de correspondencias canónicas. Los análisis individuales fueron hechos para probar la variabilidad especial y temporal de los datos y los factores que más interfieren con las variables bióticas y abióticas. Los gruos funcionales S1, SN, y K, incluyen las algas filamentosa Planktothrix agardhii (Gomont) Anagnostidis & Komárek, Cylindrospermopsis raciborskii (Woloszynska) Seenaya & Subba Raju, y algas cocoides Aphanocapsa incerta (Lemmermann) Cronberg & Komárek, respectivamente dominando los meses cálidos cuando el agua estuvo caliente, turbia , y alcalina. El desbordamiento del reservorio funciona como un disturbio natural, reduciendo la biomasa del fitoplacton a menos de un 50% y la dominancia de cianobacterias, promoviendo el dominio de los grupos funcionales F, M, MP, Lo, y X2. La llegada de nutrientes debido a la pesca intensiva, asociado con una baja profundidad local (Zmax = 7.7 m), cerca de los cages (PNC), resulta en un disturbio humano significativo que increment la prevalencia de los grupos funcionales S1, SN, y K, los cuales están compuestos principalmente por cianobacterias. Concluimos que, en los reservoiros, eventos de desborde son disturbios naturales que tienen la habilidad para reducir la biomasa del fitoplancton y alterar la estructura de las comunidades locales, y que la pesca intensia es un disturbio antropogénico que incrementa la disponibilidad de nutrientes y estimula el increment en biomasa de los grupos funcionales que incluyen las cianobacterias. Además, los grupos funcionales de fitoplancton fueron centinelas confiables de las condiciones ambientales en los reservorios en las regions semiáridas tropicales.
Citas
APHA-American Public Health Association. (2005). Standard methods for examination of water and wastewater (20th ed). Washington, DC: APHA, AWWA & WEF.
Barbosa, J. E. L., & Mendes, J. S. (2005). Estrutura da comunidade fitoplanctônica e aspetos físicos e químicos das águas do reservatório de Acauã-semiárido paraibano. In Anais da X Reunião da Sociedade Brasileira de Ficologia (Eds.), (pp. 339-360). Rio de Janeiro: Museu Nacional.
Barone, R., & Flores, L. N. (1994). Phytoplankton dynamics in a shallow, hypertrophic reservoir (Lake Arancio, Sicily). Hydrobiologia, 289, 199-214.
Bonilla, S., Aubriot, L., Soares, M. C. S., González-Piana, M., Fabre, A., Huszar, V. L. M., & Kruk, C. (2012). What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 79, 594-607.
Bouvy, M., Falcão, D., Marinho, M., Pagano, M., & Moura, A. (2000). Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology, 23, 13-27.
Borges, P. A. F., Train, S., Dias, J. D., & Bonecker, C. C. (2010). Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia, 649, 279-291.
Borges, P. A. F., Train, S., & Rodrigues, L. C. (2008). Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia, 607, 63-74.
Brasil, J., & Huszar, V. L. M. (2011). O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis, 15, 799-834.
Câmara, F. R. A., Rocha, O., Pessoa, E. K. R., Chellappa, S., & Chellappa, N. T. (2015). Morphofunctional changes of phytoplankton community during pluvial anomaly in a tropical reservoir. Brazilian Journal of Biology, 75, 628-637.
Chellappa, N. T., Chellappa, T., Câmara, F. R. A., Rocha, O., & Chellappa, S. (2009a). Impact of stress and disturbance factors on the phytoplankton communities in Northeastern Brazil reservoir. Limnologica, 39, 273-282.
Chellappa, N. T., Câmara, F. R., & Rocha, O. (2009). Phytoplankton community: indicator of water quality in the Armando Ribeiro Gonçalves reservoir and Pataxó channel, Rio Grande do Norte, Brazil. Brazilian Journal of Biology, 69, 241-251.
Chellappa, N. T., Chellappa, S. L., & Chellappa, S. (2008). Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of Northeast Brazil. Brazilian Archives of Biology and Technology, 51, 833-841.
Cole, G. (1994). Textbook of limnology. Illinois: Waveland Press.
Dantas, Ê. W., Moura, A. N., & Bittencourt-Oliveira, M. do C. (2011). Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. Anais Da Academia Brasileira de Ciências, 83, 1327-1338.
Dejenie, T., Asmelash, T., De Meester, L., Mulugeta, A., Gebrekidan, A., Risch, S., … Declerck, S. (2008). Limnological and ecological characteristics of tropical highland reservoirs in Tigray, Northern Ethiopia. Hydrobiologia, 610, 193-209.
Douma, M., Ouahid, Y., Campo, F. F. Del, Loudiki, M., Mouhri, K., & Oudra, B. (2010). Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environmental Monitoring and Assessment, 160, 439-450.
Fabbro, L. D., & Duivenvoorden, L. J. (2000). A two-part model linking multidimensional environmental gradients and seasonal succession of phytoplankton assemblages. Hydrobiologia, 438, 13-24.
Figueredo, C. C., & Giani, A. (2005). Ecological interactions between nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the furnas reservoir (Brazil). Freshwater Biology, 50, 1391-1403.
Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for Physical and Chemical Analysis of Freshwaters. Oxford, UK: IBP Handbook. Blackwell Science Publication.
Governo do Estado da Paraiba. (2007). Plano Estadual de Recursos Hídricos: Resumo Executivo e Atlas. João Pessoa: Secretaria de Estado da Ciência e Tecnologia e do Meio Ambiente - SECTA, Agência Executiva de Gestão das Águas do Estado da Paraíba - AESA.
Guo, L., Li, Z., Xie, P., & Ni, L. (2009). Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China. Aquaculture International, 17, 229-241.
Gurbuz, H., Kivrak, E., Soyupak, S., & Yerli, S. V. (2003). Predicting dominant phytoplankton quantities in a reservoir by using neural networks. Hydrobiologia, 504, 133-141.
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403-424.
Huszar, V. L. M., Silva, L. H. S., Marinho, M., Domingos, P., & Sant’Anna, C. L. (2000). Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia, 424, 67-77.
Karadžić, V., Subakov-Simić, G., Krizmanić, J., & Natić, D. (2010). Phytoplankton and eutrophication development in the water supply reservoirs Garaši and Bukulja (Serbia). Desalination, 255, 91-96.
Kosten, S., Huszar, V. L. M., Mazzeo, N., Scheffer, M., Sternberg, L. D. S. L., & Jeppesen, E. (2009). Lake and watershed characteristics rather than climate in shallow lakes influence nutrient limitation. Ecological Applications, 19, 1791-1804.
Kruk, C., Mazzeo, N., Lacerot, G., & Reynolds, C. S. (2002). Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research, 24, 901-912.
Kruk, C., Peeters, E. T. H. M., Van Nes, E. H., Huszar, V. L. M., Costa, L. S., & Scheffer, M. (2011). Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography, 56, 110-118.
Lazzaro, X., Bouvy, M., Ribeiro-Filho, R. A., Oliviera, V. S., Sales, L. T., Vasconcelos, A. R. M., & Mata, M. R. (2003). Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology, 48, 649-668.
Lins, R. P. M., Barbosa, L. G., Minillo, A., & De Ceballos, B. S. O. (2016). Cyanobacteria in a eutrophicated reservoir in a semi-arid region in Brazil: dominance and microcystin events of blooms. Revista Brasileira de Botânica, 39, 583-591.
Lopes, M. R. M., Ferragut, C., & Bicudo, C. E. M. (2009). Phytoplankton diversity and strategies in regard to physical disturbances in a shallow, oligotrophic, tropical reservoir in Southeast Brazil. Limnetica, 28, 159-174.
Lund, J. W. G., Kipling, G., & Le Creen, E. D. (1958). The inverted microscope method of estimating algae numbers and the statistical basis of estimation by counting. Hydrobiologia, 11, 143-170.
Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water analysis: some revised methods for limnologists. London: Freshwater Biological Association.
Marengo, J. A., Alves, L. M., Beserra, E. A., & Lacerda, F. F. (2011). Variabilidade e mudanças climáticas no semiárido brasileiro. In S. S. Medeiros, H. R. Gheyi, C. O. Galvão, & V. P. S. Paz (Eds.), Recursos hídricos em regiões áridas e semiáridas (pp. 384-422). Campina Grande: IJUSA-Instituto Nacional do Semiárido.
Morris, D. P., & Lewis, W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20, 315-327.
Naselli-Flores, L., Barone, R., Chorus, I., & Kurmayer, R. (2007). Toxic Cyanobacterial Blooms in Reservoirs Under a Semiarid Mediterranean Climate: The Magnification of a Problem. Environmental Toxicology, 22, 399-404.
Naselli-Flores, L. (2013). Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: The case of Lake Arancio, Sicily, Italy. Inland Waters, 4, 15-26.
Oliveira, F. H. P. C., da Silva, J. D. B., Costa, A. N. S. F., Ramalho, W. P., Moreira, C. H. P., & Calazans, T. L. S. (2015). Comunidade de cianobactérias em dois reservatórios eutróficos e tropicais no nordeste do Brasil. Acta Scientiarum - Biological Sciences, 37, 169-176.
Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia, 621, 1-19.
Panosso, R., Costa, I. A. S., Souza, N. R., de Attayde, J. L., Cunha, S. R. de S., & Gomes, F. C. F. (2007). Cianobactérias e cianotoxinas em reservatórios do estado do Rio Grande do Norte e o potencial controle das florações pela tilápia do nilo (Oreochromis niloticus). Oecologia Brasiliensis, 11, 433-449.
Poole, H. H., & Atkins, W. R. G. (1929). Photo-electric measurements of submarine illumination throughout the year. Journal of Marine Biological Association of the United Kingdom, 16, 297-324.
Poulíčková, A., Hašler, P., & Kitner, M. (2004). Annual cycle of Planktothrix agardhii (Gom.) Anagn. & Kom. nature population. International Review of Hydrobiology, 89, 278-288.
Reynolds, C. S. (1997). Vegetation Processes in the Pelagic: A model for ecosystem theory. Germany: Ecology Institute.
Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia, 369370, 11-26.
Reynolds, C. S., Elliott, A. J., & Frassl, M. A. (2014). Predictive utility of trait-separated phytoplankton groups: A robust approach to modeling population dynamics. Journal of Great Lakes Research, 40, 143-150.
Reynolds, C. S., Huszar, V., Kruk, C., Naselli, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal Plankton Research, 24, 417-428.
Reynolds, C. S., Padisak, J., & Sommer, U. (1993). Intermediate disturbance in the ecology of phytoplankton and themaintenance of species diversity: a synthesis. Hydrobiologia, 249, 183-188.
Seip, K. L., & Reynolds, C. S. (1995). Phytoplankton functional attributes along trophic gradient and season. Limnology and Oceanography, 40, 589-597.
Silva, D. F., Sousa, F. A. S., Kayano, M. T., & Araujo, L. E. (2008). Climatic accompaniment of watersheds from Mundaú River, State of Alagoas and Pernambuco, and from Paraiba River, State of Paraiba, Brazil (in Portuguese). Engenharia Ambiental, 5, 79-93.
Straskraba, M., Tunidisi, J. G., & Duncan, A. (1993). State-of-art of reservoir limnology and water quality management. In M. Straskraba, J. G. Tundisi, A. Duncan (Eds.), Comparative Reservoir Limnology and Water Quality Management (pp. 213-288). Netherlands: Kluwer Academic Publishers.
Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25, 1331-1346.
Ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO Reference Manual and CanoDraw for Windows User's guide: Software for Canonical Community Ordination (version 4.5). Ithaca, New York: Microcomputer Power.
Toledo Jr, A. P., Talarico, M., Chinez S. J., & Agudo, E. G. (1983). The application of simple models for evaluating eutrophication processes in tropical lakes and reservoirs. In Annals of the 12th Brazilian Congress of Sanitary and Environmental Engineering (Eds.), (pp. 1-34). Camboriú: Brazilian Association of Sanitary and Environmental Engineering-Abes.
Török, P., T-Krasznai, E., B-Béres, V., Bácsi, I., Borics, G., & Tóthmérész, B. (2016). Functional diversity supports the biomass-diversity humped-back relationship in phytoplankton assemblages. Functional Ecology, 30, 1593-1602.
Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik.. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 9, 1-38.
Wetzel, R. G., & Likens, G. E. (2000). Limnological Analysis. New York: Springer-Verlag.
Znachor, P., Zapomělová, E., Řeháková, K., Nedoma, J., & Šimek, K. (2008). The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquatic Sciences, 70, 77-86.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2017 Revista de Biología Tropical