Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Epipelagic copepods in Bahía Cupica, Colombian Pacific: species composition, distribution and temporal variation
PDF (Español (España))
HTML (Español (España))

Supplementary Files

Untitled (Español (España))

Keywords

zooplankton
copepods
community structure
Colombian Pacific.
zooplancton
copépodos
estructura comunitaria
Pacífico colombiano.

How to Cite

Jerez-Guerrero, M., Criales-Hernández, M. I., & Giraldo, A. (2017). Epipelagic copepods in Bahía Cupica, Colombian Pacific: species composition, distribution and temporal variation. Revista De Biología Tropical, 65(3), 1046–1061. https://doi.org/10.15517/rbt.v65i3.29449

Abstract

The study of changes in abundance and composition of copepod species, at different temporal and spatial scales, help to understand the ecosystems function and how the oceanographic dynamics affects their variability and other resources abundances. Since very few studies have been developed on this group in Colombian Pacific coastal areas, the purpose of this study was to assess the spatial and temporal changes in the copepods community distribution at Cupica Bay, between December 2012 and February 2013. For this, oblique plankton hauls were performed along six transects perpendicular to the coast, in 22 stations, using a Bongo Net (30 cm diameter, 2.1 m large, with mesh size 250 µm and 500 µm) equipped with a flowmeter, during two contrasting oceanographic periods. The results showed significant changes in oceanographic conditions and superficial circulation patterns. Fifty two (52) copepods species were identified, from which thirty five (35) were new records for the Colombian Pacific. The biggest copepod abundance was recorded in February 2013 (28 604 ind. 100 m-3), and small copepods species were the most dominant. During December 2012, species of the order Poecilostomatida were the most abundant (58.2), but during February were the species of the order Calanoida (69.5 %). The community structure and species composition was characterized by five significant groups, three groups during December 2012 and two during February 2013, dividing the bay in different zones. A positive correlation between temperature and copepods assemblages was evident during both periods, but stronger during December 2012. The results suggested that community structure and species composition of resident copepods in North Colombian Pacific neritic zones, are modelled by the intensity of upwelling, superficial local pattern circulation, and continental freshwater discharges in the region. The results are helpful to understand the copepods community structure, and the future studies should attempt to examine other variables (e.g. effect of food available and oxygen concentration dissolved) to improve understanding of copepods structure in the Pacific coast region of Colombia.

 

https://doi.org/10.15517/rbt.v65i3.29449
PDF (Español (España))
HTML (Español (España))

References

Amador, J., Alfaro, E., Lizano, O., & Magaña, V. (2006). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2), 101-142.

Antacli, J. C., Hernández, D., & Sabatini, M. E. (2010). Estimating copepods’ abundance with paired nets: Implications of mesh size for population studies. Journal of Sea Research, 63(1), 71-77.

Antacli, J., Hernández, D., & Sabatini, M. (2014). First report on the contribution of small-sized species to the copepod community structure of the southern Patagonian shelf (Argentina, 47-55°S ). Scientia Marina, 78(1), 17-26.

Atencio, F., Gutiérrez, L., & Gaviria, S. (2005). Copépodos planctónicos del complejo cenagoso de Malambo (Atlántico, Colombia) y su relación con algunos factores físicos y químicos del agua. Revista Dugandia, 1(12), 17-38.

Ayón, P., Criales-Hernandez, M., Schwamborn, R., & Hirche, H. (2008). Zooplankton research off Peru: A review. Progress in Oceanography, 79, 238-255.

Boersma, M., Mathew, K. A., Niehoff, B., Schoo, K. L., Franco-Santos, R. M., & Meunier, C. L. (2016). Temperature driven changes in the diet preference of omnivorous copepods: No more meat when it’s hot? Ecology Letters, 19(1), 45-53.

Boltovskoy, D. (Ed.) (1981). Atlas del zooplancton del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Mar del Plata, Argentina: INIDEP.

Boltovskoy, D. (1999). South Atlantic zooplankton (Vol. 1-2). Leiden, The Netherlands: Backhuys Publishers.

Bradford-Grieve, J., Markhaseva, E., Rocha, C., & Abiahy, B. (1999). Copepoda. In D. Boltovskoy (Ed.), South Atlantic Zooplankton (Vol. 2, pp. 869-1098). Leiden, The Netherlands: Backhuys Publishers.

Burd, B., & Thomson, R. (2015). The importance of hydrothermal venting to water-column secondary production in the northeast Pacific. Deep Sea Research Part II, 121, 85-94.

Calbet, A. (2008). The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science, 65, 325-331.

Centro de Control de Contaminación del Pacífico (CCCP). (2002). Compilación oceanográfica de la Cuenca Pacífica Colombiana (Imágenes d). Cali, Colombia: CCCP.

Christou, E. (1998). Interannual variability of copepods in a Mediterranean coastal area (Saronikos Gulf, Aegean Sea). Journal of Marine Systems, 15, 523-532.

Clarke, K., & Warwick, R. (2001). Change in marine communities: an approach to statistical analysis and interpretation (2nd Ed.). Plymouth, England: PRIMER-E Ltd.

Criales-Hernández, M. I., Schwamborn, R., Graco, M., Ayón, P., Hirche, H. J., & Wolff, M. (2008). Zooplankton vertical distribution and migration off Central Peru in relation to the oxygen minimum layer. Helgoland Marine Research, 62(2 Suppl. 1), 85-100.

Devis-Morales, A., Schneider, W., Montoya-Sánchez, R. A., & Rodríguez-Rubio, E. (2008). Monsoon-like winds reverse oceanic circulation in the Panama Bight. Geophysical Research Letters, 35(20), 1-6.

Dias, C. O., Araujo, A. V., Vianna, S. C., Loureiro Fernandes, L. F., Paranhos, R., Suzuki, M. S., & Bonecker, S. L. C. (2015). Spatial and temporal changes in biomass, production and assemblage structure of mesozooplanktonic copepods in the tropical south-west Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom, 95(3), 483-496.

Escribano, R., & Hidalgo, P. (2000). Spatial distribution of copepods in the north of the Humboldt Current region off Chile during coastal upwelling. Journal of the Marine Biological Association of the United Kingdom, 80(2), 283-290.

Escribano, R., Hidalgo, P., Fuentes, M., & Donoso, K. (2012). Zooplankton time series in the coastal zone off Chile: Variation in upwelling and responses of the copepod community. Progress in Oceanography, 97-100, 174-186.

Forsbergh, E. (1969). Estudio sobre la climatología, oceanografía y pesquerías del Panamá Bight. Comisión Interamericana del Atún Tropical, 14(2), 46-385.

Gallienne, C., & Robins, D. (2001). Is Oithona the most important copepod in the world’s oceans? Journal of Plankton Research, 23(12), 1421-1432.

Garzke, J., Ismar, S. M. H., & Sommer, U. (2015). Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oecologia, 177(3), 849-860.

Giraldo, A., & Gutiérrez, E. (2007). Composición taxonómica del zooplancton superficial en el Pacífico colombiano (septiembre 2003). Investigaciones Marinas, 35(1), 117-122.

Giraldo, A., & Ramírez, D. G. (2010). Fitoplancton costero en Cabo Marzo y Punta Cruces, margen nororiental del Océano Pacífico colombiano. Boletín Científico CIOH, (28), 173-203.

Giraldo, A., Rodríguez-Rubio, E., & Zapata, F. (2008). Condiciones oceanográficas en isla Gorgona, Pacífico oriental tropical de Colombia. Latin American Journal of Aquatic Research, 36(1), 121-128.

Giraldo, A., Velasco, E., & Martínez, T. I. (2014). Impacto alimentario de los copépodos calanoideos en el Océano Pacífico colombiano. Revista de Ciencias, 18(2), 11-25.

Grunewald, A. C., Morales, C. E., González, H. E., Sylvester, C., & Castro, L. R. (2002). Grazing impact of copepod assemblages and gravitational flux in coastal and oceanic waters off central Chile during two contrasting seasons. Journal of Plankton Research, 24(1), 55-67.

Hays, G., Richardson, A., & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology and Evolution, 20(6), 337-344.

Hernández-Trujillo, S., Esqueda-Escárcega, G., & Palomares-García, R. (2010). Variabilidad de la abundancia de zooplancton en Bahía Magdalena Baja California Sur, México (1997-2001). Latin American Journal of Aquatic Research, 38(3), 438-446.

Hopcroft, R., & Roff, J. (1998). Zooplankton growth rates: The influence of size in nauplii of tropical marine copepods. Marine Biology, 132(1), 87-96.

Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A., & Kiørboe, T. (2016). A global synthesis of seasonal temperature-size responses in copepods. Global Ecology and Biogeography, 25, 988-999.

Hwang, J. S., López-López, L., Molinero, J. C., Tseng, L. C., Chen, Q. C., & Hung, J. J. (2014). Copepod assemblages in the northern South China Sea during inter-monsoon transition periods. Journal of Sea Research, 86(February), 43-48.

Jaimes, J. C., & López, R. H. (2009). Efecto de los periodos circadiano y lunares sobre la biomasa de copépodos (Crustacea) en aguas marinas del Pacífico Colombiano. Resúmenes del XIII Congreso Latinoamericano de Ciencias del Mar (pp. 4-28), La Habana, Cuba.

Jaimes, J. C., & López, R. H. (2014). Biomasa y abundancia de Copepoda (Crustacea) en aguas superficiales del océano Pacífico colombiano durante septiembre de 2007. Revista de Biología Marina y Oceanografía, 49(1), 31-41.

Joseph, A. (2014). Measuring Ocean currents: tools, technologies and data. Waltham, USA: Elsevier.

Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 181-217.

Kozak, E., Franco-Gordo, C., Suárez-Morales, E., & Palomares-García, R. (2014). Seasonal and interannual variability of the calanoid copepod community structure in shelf waters of the Eastern Tropical Pacific. Marine Ecology Progress Series, 507, 95-110.

Lenz, J. (2000). Introduction. In R. P. Harris, P. H. Wiebe, J. Lenz, H. R. Skjoldal, & M. Huntley (Eds.), ICES Zooplankton Methodology Manual (pp. 1-32). San Diego, USA: Academic Press.

López, R. H. (2012). Distribución y abundancia de copépodos pelágicos en el Pacífico Colombiano. Universidad Militar Nueva Granada, 8, 108-131.

López, R., & Medellín, J. (2010). Distribución de eufausiáceos (Crustacea: Malacostraca) en el Océano Pacífico Colombiano durante el periodo 02 a 27 de septiembre de 2005. Revista Facultad de Ciencias Básicas, 6(2), 240-255.

López, R. H., & Mojica, L. H. (2015a). Influencia abiótica sobre algunos géneros de copépodos (Crustacea) epipelágicos en el Pacífico Colombiano. Septiemebre de 2002. Universidad Militar Nueva Granada, 11(1), 20-33.

López, R. H., & Mojica, L. H. (2015b). Distribution and abundance of Oncaea media and O. venusta (Crustacea: Copepoda) in the Colombian Pacific ocean during two periods in 2001. Revista U.D.C.A Actualidad & Divulgación Científica, 18, 197-206.

López, R. H., & Mojica, L. H. (2015c). Especies de Oithona (Crustacea: Copepoda) en el Pacífico Colombiano en el segundo periodo lluvioso de 2001. Universidad Militar Nueva Granada, 11(2), 38-53.

Magalhães, A., Pereira, L. C. C., & Costa, R. M. (2015). Relationships between copepod community structure, rainfall regimes, and hydrological variables in a tropical mangrove estuary (Amazon coast, Brazil). Helgoland Marine Research, 69(1), 123-136.

Martínez-Aguilar, T. I., Giraldo, A., & Rodríguez-Rubio, E. (2007). Zooplancton en la Corriente Colombia, Pacífico colombiano durante marzo de 2006. Boletín Científico CCCP, 14, 69-82.

Medellín-Mora, J., Escribano, R., & Schneider, W. (2016). Community response of zooplankton to oceanographic changes (2002-2012) in the central/southern upwelling system of Chile. Progress in Oceanography, 142, 17-29.

Miyashita, L. K., De Melo Júnior, M., & Lopes, R. M. (2009). Estuarine and oceanic influences on copepod abundance and production of a subtropical coastal area. Journal of Plankton Research, 31(8), 815-826.

Moller, K., Schmidt, J., St. John, M., Temming, A., Diekmann, R., Peters, J., … Mollmann, C. (2015). Effects of climate-induced habitat changes on a key zooplankton species. Journal of Plankton Research, 0(0), 1-12.

Monsalve, B. (1976). Copépodos del Pacífico colombiano, cruceros Pacífico V y VII. Divulgación Pesquera, 18(3,4), 2-9.

Murcia, M., & Giraldo, A. (2007). Condiciones oceanográficas y composición del mesozooplancton en la zona Oceánica del Pacífico colombiano durante septiembre-octubre 2004. Boletín Científico CCCP, 14, 83-94.

Palomares, R., Suárez-Morales, E., & Hernández-Trujillo, S. (1998). Catálogo de los copépodos (Crustacea) pelágicos del Pacífico Mexicano. México: CICIMAR/ECOSUR.

Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., & Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 285-317.

Peterson, W. (1998). Life cycle strategies of copepods in coastal upwelling zones. Journal of Marine Systems, 15(1-4), 313-326.

Postel, L., Fock, H., & Hagen, W. (2000). Biomass and Abundance. In R. P. Harris, P. H. Wiebe, J. Lenz, H. R. Skjoldal, & M. Huntley (Eds.), ICES Zooplankton Methodology Manual (pp. 83-174). San Diego, USA: Academic Press.

Poveda, I. C., Rojas, C. A., Rudas, A., & Rangel, O. (2004). El Chocó biogeográfico: ambiente físico. En O. Rangel (Ed.), Colombia diversidad biótica IV, El Chocó biogeográfico/Costa Pacífica (pp. 1-21). Bogota, Colombia: Universidad Nacional de Colombia.

Prahl, H. Von, Cantera, J. R., & Contreras, R. (1990). Manglares y hombres del Pacífico colombiano. Colombia: Editorial Presencia.

Rakhesh, M., Raman, A., Ganesh, T., Chandramohan, P., & Dehairs, F. (2013). Small copepods structuring mesozooplankton community dynamics in a tropical estuary-coastal system. Estuarine, Coastal and Shelf Science, 126, 7-22.

Razouls, C., de Bovée, F., Kouwenberg, J., & Desreumaux, N. (2017). Diversity and geographic distribution of marine planktonic copepods. Retrieved from http://copepodes.obs-banyuls.fr/en

Rice, E., Dam, H. G., & Stewart, G. (2015). Impact of Climate Change on Estuarine Zooplankton: Surface Water Warming in Long Island Sound Is Associated with Changes in Copepod Size and Community Structure. Estuaries and Coasts, 38, 13-23.

Rodríguez-Rubio, E., & Giraldo, A. (2011). Características oceanográficas en la isla Malpelo y su relación con la cuenca oceánica del pacífico colombiano. Boletin de Investigaciones Marinas Costeras, 40, 19-32.

Rodríguez-Rubio, E., Schneider, W., & Abarca del Río, R. (2003). On the seasonal circulation within the Panama Bight derived from satellite observations of wind, altimetry and sea surface temperature. Geophysical Research Letters, 30(7), 1410-1413.

Rojas, P. M., & Landaeta, M. F. (2014). Fish larvae retention linked to abrupt bathymetry at Mejillones Bay (northern Chile) during coastal upwelling events. Latin American Journal of Aquatic Research, 42(5), 989-1008.

Smith, P. E., & Richardson, S. L (1979). Técnicas modelo para prospecciones de huevos y larvas de peces pelagicos (Documento Técnico de Pesca No. 175). Roma, Italia: FAO.

Sommer, U., & Stibor, H. (2002). Copepoda-Cladocera-Tunicata: The role of three major mesozooplankton groups in pelagic food webs. Ecological Research, 17(2), 161-174.

Tejada, C., Castro, L., Navarrete, A., Cardona, T., Otero, L., Afanador, F., … Pedroza, W. (2003). Panorama de la Contaminación Marina del Pacífico colombiano (DIMAR). San Andrés de Tumaco, Colombia: Centro de Control de Contaminación del Pacífico.

Tsai, A., Gong, G., & Huang, Y. (2013). Variations of microbial loop carbon flux in western subtropical Pacific coastal water between warm and cold season. Journal of Experimental Marine Biology and Ecology, 449, 111-117.

Turner, J. (2004). The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies, 43(2), 255-266.

Valencia, B., & Giraldo, A. (2009). Hipéridos (Crustacea: Amphipoda) en el sector norte del Pacífico oriental tropical colombiano. Latin American Journal of Aquatic Research, 37(2), 265-273.

Valencia, B., Lavaniegos, B., Giraldo, A., & Rodríguez-Rubio, E. (2013). Temporal and spatial variation of hyperiid amphipod assemblages in response to hydrographic processes in the Panama Bight, eastern tropical Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 73, 46-61.

Van Guelpen, L., Markle, D., & Duggan, D. (1982). An evaluation of accuracy, precision, and speed of several zooplankton subsampling techniques. Journal du Conseil, 40(3), 226-236.

Vargas, C., & González, H. (2004). Plankton community structure and carbon cycling in a coastal upwelling system. II. Microheterotrophic pathway. Aquatic Microbial Ecology, 34, 165-180.

Villegas, N. L., & Málikov, I. (2006). Modelación de la Estructura Dinámica de las Aguas de la Cuenca del Pacífico Colombiano. Boletín Científico CCCP, 13, 97-114.

Walsh, J. J. (1988). On the nature of continental shelves. Londres: Academic Press.

Walter, T. C., & Boxshall, G. (2016). World of Copepods database. Recuperado de http://www.marinespecies.org/copepoda

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.