Resumen
Se evaluaron cuatro alimentos microencapsulados en el crecimiento y supervivencia de larvas de pejelagarto (Atractosteus tropicus). Los tratamientos consistieron en cuatro dietas experimentales y un control: 1) Microcápsula con base en harina de pescado (DP), 2) Microcápsula con base en una combinación de harina de cerdo y pollo (Re), 3) Microcápsula con base en Nannochloropsis gaditana (Ng), 4) Microcápsula con base en un preparado enzimático, pancreatina (PE) el tratamiento control 5) Nauplios de Artemia (Na). Los resultados de las dietas indican que las larvas alimentadas con Nauplios (Na) tuvieron el mayor crecimiento y supervivencia (3.93 cm, 0.19 g y 82 % respectivamente). Mientras que en el caso de las larvas alimentadas con las dietas microencapsuladas, los mejores valores en supervivencia se observaron con las dietas Nannochloropsis gaditana (Ng) y preparado enzimático (PE) (20.0 y 19.2 % respectivamente). Nuestros resultados demuestran que el uso de microencapsulados para la alimentación de larvas de A. tropicus es factible, aunque se requiere más investigaciones para optimizar su diseño y elaboración para mejorar el crecimiento y supervivencia de los organismos.
Citas
Alarcón, F. J., Moyano, F. J., & Díaz, M. (1999). Optimization of the protein fraction of microcapsules used in feeding of marine fish larvae using in vitro digestibility techniques. Aquaculture Nutrition, 5, 107-113.
Álvarez-González, C. A., Márquez-Couturier, G., Contreras-Sánchez, W. M., & Rodríguez-Valencia, W. (2007). Estrategia para el uso sustentable de los recursos pesqueros en Boca de Chilapa, Reserva de la Biosfera Pantanos de Centla, Tabasco: Establecimiento de una planta de producción de peces nativos, pejelagarto, tenguayaca y castarrica. En G. Halffter, S. Guevara, & A. Melic (Eds.), Monografías 3ercer Milenio. La cultura de la diversidad biológica. (Vol. 6, pp. 197-205). Zaragoza, España: SEA, CONABIO, CONANP, CONACYT, INECOL, UNESCO-MaB & Ministerio del Medio Ambiente-Gobierno de España. M3M, GORFI S.A.
Cahu, C., & Zambonino Infante, J. L. (2001). Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200(1-2), 161-180.
Cañavate, J. P., & Fernández-Díaz, C. (1999). Influence of co-feeding larvae with live and inert diets on weaning the sole Solea senegalensis onto comercial dry feeds. Aquaculture, 174, 255-263.
Cara, J. B., Moyano, F. J., Gander, B., & Yúfera, M. (2007). Development of novel casein-protamine based microparticles for early feeding of fish larvae: in vitro evaluation. Journal of Microencapsulation, 24(6), 505-514.
Chang, Q., Liang, M. Q., Wang, J. L., Chen, S. Q., Zhang, X. M., & Liu, X. D. (2006). Influence of larval co-feeding with live and inert diets on weaning the tongue sole Cynoglossus semilaevis. Aquaculture Nutrition, 12(2), 135-139.
Chu, F. E., & Ozkizilcik, S. (1999). Acceptability of complex microencapsulated diets by striped bass (Morone saxatilis) larvae. Journal of Experimental Marine Biology and Ecology, 237, 1-9.
Clack, B. W. (2006). Development of microparticulate feeds and methods to improve acceptability of artificial diets by blue spotted goby larvae (Asterropteryx semipunctata) (Master's thesis). Oregon State University, Oregon, USA.
Dabrowski, K. (1979). The role of proteolitic enzymes in fish digestion. In E. Styczunska-Jurewivcsk, T. Jaspers & E. Persoone (Eds.), Cultivation of Fish Fry and its Live Food (Vol. 4, pp. 107-126). Belgium: European Mariculture Society.
Engrola, S., Conceição, L. E. C., Dias, L., Pereira, R., Ribeiro, L., & Dinis, M. T. (2007). Improving weaning strategies for Senegalese sole: effects of body weight and digestive capacity. Aquaculture Research, 38, 696-707.
Fernández-Díaz, C., Kopecka, J., Cañavate, J. P., Sarasquete, C., & Solé, M. (2006). Variations on development and stress defences in Solea senegalensis larvae fed on live and microencapsulated diets. Aquaculture, 251, 573–584.
Fernández-Díaz, C., & Yúfera, M. (1997). Detecting growth in gilthead seabream, Sparus aurata L., larvae fed microcapsules. Aquaculture, 153, 93-102.
Fletcher, R. C. Jr, Roy, W., Davie, A., Taylor, J., Robertson, D., & Migaud, H. (2007). Evaluation of new micro particulate for early weaning of Atlantic cod (Gadus morhua): Implication on larval performances and tank hygiene. Aquaculture, 263, 35–51.
Frías-Quintana, C. A., Álvarez-González, C. A., & Márquez-Couturier, G. (2010). Diseño de microdietas para el larvicultivo de pejelagarto Atractosteus tropicus, Gill 1863. Universidad y Ciencia, 26(2), 265-282.
Frías-Quintana, C. A., Marquez-Couturier, G., Alvarez-Gonzalez, C. A., Tovar-Ramirez, D., Nolasco-Soria, H., Galaviz-Espinosa, M. A., … Gisbert, E. (2015). Development of digestive tract and enzyme activities during the early ontogeny of the tropical gar Atractosteus tropicus. Fish Physiology and Biochemistry, 41(5), 1-17.
Frías-Quintana C. A., Domínguez-Lorenzo, J., Álvarez-González, C. A., Tovar-Ramírez, D., & Martínez-García, R. (2016). Using cornstarch in microparticulate diets for larvicultured tropical gar (Atractosteus tropicus). Fish Physiology and Biochemistry, 42, 517-528.
García, R. E. (2006). Uso de dietas microencapsuladas para la alimentación de larvas de la Cabrilla Arenera Paralabrax maculatofasciatus (Tesis de Maestría). Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marina. La Paz, Baja California Sur, México.
González-Rodríguez, M. L., Holgado, M. A., Sánchez-Lafuente, C., Rabasco, A. M., & Fini A. (2002). Alginate/chitosan particulate systems for sodium diclofenac release. International Journal of Pharmaceutics, 232, 225–234.
Guerrero-Zárate, R., Alvarez-González, C. A., Olvera-Novoa, M. A., Perales-García, N., Frías-Quintana, C. A., Martínez-García, R., & Contreras-Sánchez, W. M. (2014). Partial characterization of digestive proteases in tropical gar Atractosteus tropicus juveniles. Fish Physiology and Biochemistry, 40, 1021–1029.
Hart, P. R., & Purser, G. J. (1996). Weaning of hatchery-reared greenback flounder (Rhombosolea tapirina Gunther) from live to artificial diets: Effects of age and duration of the changeover period. Aquaculture, 145, 171–181.
Kuz’mina, V. V. (2015). The role of proteases of food objects and enteral microbiota in nutritive and thermal adaptations of the digestive system in fishes. Journal of Evolutionary Biochemistry and Physiology, 51(3), 179-189.
Langdon, C. J. (2003). Microparticle types for delivering nutrients to marine fish larvae. Aquaculture, 227, 259– 275.
Langdon, C. J., Levine, D. M., & Jones D. A. (1985). Microparticulate feeds for marine suspension-feeders. Journal of Microencapsulation, 2, 1–11.
Lauff, M., & Hoffer, R. (1984). Proteolitic enzymes in fish development and the importance of dietary enzymes. Aquaculture, 37, 335-346.
Lavens, P., & Sorgeloos, P. (2000). The history, present status and prospects of the availability of Artemia cyst for aquaculture. Aquaculture, 181, 397-403.
Márquez-Couturier, G., Álvarez-González, C. A., Contreras, W., Hernández, U., Hernández, Hernández-Franyutti, A. A., … Goytortua, E. (2006). Avances en la alimentación y nutrición de pejelagarto Atractosteus tropicus. En L. E. Cruz Suárez, D. Ricque Marie, M. Tapia Salazar, M. G. Nieto López, D. A Villarreal Cabazos, A. C. Puello, & A. García Ortega (Eds.). Memorias del VIII Simposium Internacional de Nutrición Acuícola (446-523 pp). UANL, Monterrey, Nuevo León, México.
Márquez-Couturier, G., Váquez-Navarrete, C. J., Contreras-Sánchez, W. M., & Alvarez-González, C. A. (2015). Acuicultura tropical sustentable: Una estrategia para la producción y conservación del pejelagarto (Atractosteus tropicus) en Tabasco, México. Colección José Narciso Rovirosa, (2ª Ed. Vol. 3). México: Universidad Juárez Autónoma de Tabasco.
Menossi, O. C., Takata, R., Sánchez-Amaya, I., Mendes de Freitas, T., Yúfera, M., & Portella, M. C. (2012). Crescimento e estruturas do sistema digestório de larvas de pacu alimentadas com dieta microencapsulada produzida experimentalmente. Revista Brasileira de Zootecnia, 41(1), 1-10.
Mladenovska, K., Raicki, R. S., Janevikb, E. I., Ristoski, T., Plavova M. J., Kavrakovski, Z., Dodov, M. G., & Goracinova, K. (2007). Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. International Journal of Pharmaceutics, 342, 124-136.
Muir, P. R., & Sutton, D. C. (1994). Bacterial degradation of microencapsulated foods used in larval culture. Journal of the World Aquaculture Society, 25(3), 371-378.
Nordgreen, A., Yúfera, M., & Hamre, K. (2008). Evaluation of changes in nutrient composition during production of cross-linked protein microencapsulated diets for marine fish larvae and suspension feeders. Aquaculture, 285, 159-166.
Pedroza-Islas, R., Duirán-Rodríguez, C., & Trejo-Martínez, S. (1999). Using biopolymer blends for shrimp feedstuff micro encapsulation II: particle size, morphology and microstructure of microcapsules. Food Research International, 32, 167-374.
Pedroza-Islas, R., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2000). Using biopolymer blends for shrimp feedstuff micro encapsulation II: dissolution and floatability kinetrics as selection criteria. Food Research International, 33, 19-24.
Pedroza-Islas, R., Macías-Bravo, S., & Vernon-Carter, E. J. (2002). Oil thermo-oxidative stability and surface oil determination of biopolymer microcapsules. Revista Mexicana de Ingeniería Química, 1, 37-44.
Person-Le Ruyet, J., Alexander, J. C., Thébaud, L. & Mugnier, C. (1993). Marine fish larvae feeding: formulated diets or live prey. Journal of the World Aquaculture Society, 24, 211-224.
Ricker, W. E. (1958). Handbook of computations for biological statistics of fish populations. Canadian Journal of Fishery and Aquature Science, 119, 1-300.
Ribeiro, L., Engrola, S. & Dinis. M. T. (2005). Weaning of senegalense sole (Solea senegalensis) postlarvae to an inert diet with a co-feeding regime. Ciencias Marinas, 31, 327-337.
Rosas-Ledesma, P., León-Rubio, J., Alarcón, F. J., Moriñigo, M. A., & Balebona, M. C. (2012). Calcium alginate capsules for oral administration of fish probiotic bacteria: assessment of optimal conditions for encapsulation. Aquaculture Research, 43, 106-116.
Rosenlund, G., Stoss, J., & Talbot, C. (1997). Co-feeding marine fish larvae with inert and live diets. Aquaculture, 155, 183- 191.
Sirvas-Cornejo, S., Latchford, J. W., & Jones, D. A. (2007). Effect of microencapsulated diets supplemented with genetically modified bacteria on the growth and survival of Fenneropenaeus indicus postlarvae. Aquaculture Nutrition, 13, 10-16.
Takeuchi, T. (2001). A review of feed development for early life stages of marine finfish in Japan. Aquaculture, 200, 203-222.
Tonon, R. V., Brabet C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae) powder produced by spray drying. Journal of Food Engineering, 88, 411-418.
Walford, J., Lim, T. M., & Lam, T. J. (1991). Replacing live food with microencapusulated diets in the rearing of sea bass (Lates calcarifer) larvae: do the larvae ingest and digest protein-membrane microcapsules?. Aquaculture, 92, 225-235.
Walker, P. J., & Mohan, C. V. (2009). Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. Reviews in Aquaculture, 1, 125-154.
Yúfera, M., Pascual, E., & Fernández-Díaz, C. (1999). A highly efficient microencapsulated food for rearing early larvae of marine fish. Aquaculture, 177, 249-256.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2018 Revista de Biología Tropical