Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Bite force, cranial morphometrics and size in the fishing bat Myotis vivesi (Chiroptera: Vespertilionidae)
PDF
HTML

Supplementary Files

figures

Keywords

bite force
cranial morphology
Myotis
Noctilio
piscivory
size
gape angle
fuerza de mordida
morfología craneal
Myotis
Noctilio
piscivoría
tamaño
ángulo de apertura mandibular

How to Cite

Ospina, S. M., De Luna, E., Herrera, G., Arroyo-Cabrales, J., & Flores-Martínez, J. J. (2018). Bite force, cranial morphometrics and size in the fishing bat Myotis vivesi (Chiroptera: Vespertilionidae). Revista De Biología Tropical, 66(4), 1614–1628. https://doi.org/10.15517/rbt.v66i4.32904

Abstract

Fish-eating in bats evolved independently in Myotis vivesi (Vespertillionidae) and Noctilio leporinus (Noctilionidae). We compared cranial morphological characters and bite force between these species to test the existence of evolutionary parallelism in piscivory. We collected cranial distances of M. vivesi, two related insectivorous bats (M. velifer and M. keaysi), two facultatively piscivorous bats (M. daubentonii and M. capaccinii), and N. leporinus. We analyzed morphometric data applying multivariate methods to test for differences among the six species. We also measured bite force in M. vivesi and evaluated if this value was well predicted by its cranial size. Both piscivorous species were morphologically different from the facultatively piscivorous and insectivorous species, and skull size had a significant contribution to this difference. However, we did not find morphological and functional similarities that could be interpreted as parallelisms between M. vivesi and N. leporinus. These two piscivorous species differed significantly in cranial measurements and in bite force. Bite force measured for M. vivesi was well predicted by skull size. Piscivory in M. vivesi might be associated to the existence of a vertically displaced temporal muscle and an increase in gape angle that allows a moderate bite force to process food.

https://doi.org/10.15517/rbt.v66i4.32904
PDF
HTML

References

Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5-16.

Aguirre, L. F., Herrel, A., Van Damme, R., & Matthysen, E. (2002). Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceeding of the Royal Society, 269, 1271-1278.

Aguirre, L. F., Herrel, A., Van Damme, R., & Matthysen, E. A. (2003). The implications of food hardness for diet in bats. Functional Ecology, 17, 201-212.

Aihartza, J. R., Almenar, D., Goiti, U., Salsamendi, E., & Garin, I. (2008). Fishing behavior in the long-fingered bat Myotis capaccinii (Bonaparte, 1837), an experimental approach. Acta Chiropterologica, 10, 287-301.

Blood, B. R., & Clark, M. K. (1998). Myotis vivesi. Mammalian Species, 588, 1-5.

Dumont, E. R. (1999). The effect of food hardness on feeding behavior in frugivorous bats (Phyllostomidae), an experimental study. Journal of Zoology, 248, 219-229.

Dumont, E. R., & Herrel, A, (2003). The effects of gape angle and bite point on bite force in bats. The Journal of Experimental Biology, 206, 2117-2123.

Dumont, E. R., Herrel, A., Medellin, R. A., Vargas-Contreras, J., & Santana, A. (2009). Built to bite, cranial design and function in the wrinkle-faced bat. Journal of Zoology, 279, 329-337.

Emerson, S. B., & Radinsky, A. (1980). Functional Analysis of Sabertooth Cranial Morphology. Paleobiology, 6, 295-312.

Findley, J. S. (1972). Phenetic Relationships among bats of the genus Myotis. Systematic Zoology, 21, 31-52.

Flannery, T. (1995). Mammals of the South-West Pacific & Moluccan Islands. Chatswood, Australia: Australian Museum, Reed Books.

Freeman, P. W. (1981). Correspondence of food habits and morphology in insectivorous bats. Journal of Mammalogy, 62, 166-171.

Freeman, P. W. (1984). Functional cranial analysis of large animalivorous bats (Microchiroptera). Biological Journal of the Linnean Society, 21, 387-408.

Freeman, P. W. (1988). Frugivorous and Animalivorous bats (Microchiroptera) dental and cranial adaptations. Biological Journal of the Linnean Society, 33, 249-272.

Freeman, P. W., & Lemen, C. A. (2008). Measuring bite force in small mammals with a piezo-resistive sensor. Journal of Mammalogy, 89, 513-517.

Freeman, P. W., & Lemen, C. A. (2010). Simple predictors of bite force in bats: the good, the better and the better still. Journal of Zoology, 282, 284-290.

Ghazali, M., & Dzeverin, I. (2013). Correlations between hardness of food and craniodental traits in nine Myotis species (Chiroptera, Vespertilionidae). Vestnik Zoologii, 47, 67-76.

Herrel, A., De Smet, A., Aguirre, L. F., & Aerts, P. (2008). Morphological and mechanical determinants of bite force in bats, do muscles matter? The Journal of Experimental Biology, 211, 86-91.

Herring, S. W., & Herring, S. E. (1974). The superficial masseter and gape in mammals. American Naturalist, 108, 561-576.

Jones, K. E., Purvis, A., Maclarnon, A. N. N., Bininda-Emonds, O. R., & Simmons, N. B. (2002). A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 77, 223-259.

Krüger, F., Clare, E. L., Greif, S., Siemers, B. M., Symondson, W. O. C., & Sommer, R. S. (2014). An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Molecular Ecology, 23, 3657-3671.

Law, N., & Urquhart, C. A. (2000). Diet of the large-footed Myotis macropus at a forest stream roost in northern New South Wales. Australian Mammalogy, 22, 121-124.

Lewis-Oritt, N., Van Den Bussche, R. A., & Baker, R. J. (2001). Molecular evidence for evolution of piscivory in Noctilio (Chiroptera, Noctilionidae). Journal of Mammalogy, 82, 748-759.

Nogueira, R. M., Monteiro, L., Peracchi, A. L., & De Araújo, A. F. B. (2005). Ecomorphological analysis of the masticatory apparatus in the seed-eating bats, genus Chiroderma (Chiroptera, Phyllostomidae). Journal of Zoology, London, 266, 355-364.

Nogueira, R. M., Peracchi, A. L., & Monteiro, L. (2009). Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23, 715-713.

Norberg, U. M., & Rayner, J. M. V. (1987). Ecological morphology and flight in bats (Mammalia; Chiroptera), wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society, 316, 335-427.

Ospina-Garcés, S. M., De Luna, E. D., Gerardo-Herrera, L. M., & Flores-Martínez, J. J. (2016). Cranial shape and diet variation in Myotis species (Chiroptera, Vespertilionidae), testing the relationship between form and function. Acta Chiropterologica, 18, 163-180.

Pacheco, V., & Patterson, B. D. (1992). Systematics and biogeographic analyses of four species of Sturnira (Chiroptera, Phyllostomidae), with emphasis on Peruvian forms. Memorias del Museo de Historia Natural UNMSM, 21, 57-81.

R Core Team (2008). R program (version 3.3.3) [Computer program]. Retrieved from http://www.R-project.org.

Reduker, D. W. (1983). Functional analysis of the masticatory apparatus in two species of Myotis. Journal of Mammalogy, 64, 277-286.

Revell, L. J. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1, 319-329.

Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.

Rohlf, J. (2005). TpsDIG2 (version 2) [Computer program]. Retrieved from http://life.bio.sunysb.edu/morph

Ruedi, M., & Mayer, F. (2001). Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21, 436-448.

Santana, S. E., Dumont, E., & Davis, J. J. (2010). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24, 776-784.

Siemers, B. M., Dietz, C., Nill, D., & Schnitzler, H. U. (2001). Myotis daubentonii is able to catch small fish. Acta Chiropterologica, 3, 71-75.

Sikes, R. S., & Gannon, W. L. (2011). The Animal Care and Use Committee of the American Society of Mammalogists, Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92, 235-253.

Stadelmann, B., Herrera, L. G., Arroyo-Cabrales, J., Flores-Martinez, J. J., May, B. P., & Ruedi, M. (2004). Molecular systematics of the fishing bat Myotis (pizonyx) vivesi. Journal of Mammalogy, 85, 133-139.

StatSoft Inc. (2011). Statistica (Version 10) [Computer program]. Tulsa, Oklahoma: StatSoft Inc.

Swartz, S. M., Freeman, P., & Stockwell, E. F. (2003). Ecomorphology of bats, Comparative and experimental approaches relating structural design to ecology. In T. H. Kunz, & B. Fenton (Eds.), Bat Ecology (pp. 257-300). Chicago: The University of Chicago Press.

Van Cakenberghe, V., Herrel, A., & Aguirre, L. F. (2002). Evolutionary relationships between cranial shape and diet in bats (Mammalia,Chiroptera). In P. Aerts, K. D'Août, A. Herrel, & R. Van Damme (Eds.), Topics in Functional and Ecological Vertebrate Morphology (pp. 205-236). Maastricht: Shaker Publishing.

Whitaker, J., & Findley, J. S. (1980). Foods eaten by some bats from Costa Rica and Panama. Journal of Mammalogy, 61, 540-544.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.