Resumen
Polyphenols are a large diversity of chemical types and interactions that can be responsible for a multiplicity of protective functions ranging from toxicity and light/UV shielding to signal transduction. Bacharis antioquensis has been described as a potential source of new photoprotective compounds with antioxidant capacity associated to polyphenols compounds. The aim of the present work was to develop a micropropagation protocol of B. antioquensis and evaluate the production of polyphenols by in vitro plants exposure to UVB radiation. Branches in juvenile stage of B. antioquensis were collected, desinfected and cultured on half strength Murashige and Skoog medium, supplemented or not with growth regulators (TDZ, BA or GA3) on light/darkness conditions and liquid/solid media. After UV treatments, the absorption coefficient in the UVA-UVB range, the antioxidant capacity and the total phenol content (TPC) from all tissue cultures and the wild tissue were evaluated. Growth regulators, light conditions and type of culture medium (solid or liquid) had a favorable effect on the response of explants. Treatments containing BA + GA3 regulators (2 and 0.5 mg/L respectively) and TDZ (0.5 mg/L) showed positive results in bud growth in liquid medium and darkness. Results showed that UVR exhibited promoting effects on the accumulation of polyphenols, enhancing the absorption coefficient in the UVA-UVB range, the antiradical capacity and the TPC of B. antioquensis in vitro plants. Rev. Biol. Trop. 66(2): 754-764. Epub 2018 June 01.
Citas
Abad, M. J., Bessa, A. L., Ballarin, B., Aragón, O., Gonzales, E., & Bermejo, P. (2006). Anti-inflammatory activity of four Bolivian Baccharis species (Compositae). Journal of Ethnopharmacology, 103(3), 338-344. http://doi.org/10.1016/j.jep.2005.08.024
Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., & Tattini, M. (2013). Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiology and Biochemistry : PPB / Société Française de Physiologie Végétale, 72, 35-45. http://doi.org/10.1016/j.plaphy.2013.03.014
Agati, G., Galardi, C., Gravano, E., Romani, A., & Tattini, M. (2002). Flavonoid Distribution in Tissues of Phillyrea latifolia L. Leaves as Estimated by Microspectrofluorometry and Multispectral Fluorescence Microimaging. Photochemistry and Photobiology, 76(3), 350-360. http://doi.org/10.1562/0031-8655(2002)0760350FDITOP2.0.CO2
Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186(4), 786-793. http://doi.org/10.1111/j.1469-8137.2010.03269.x
Antognoni, F., Zheng, S., Pagnucco, C., Baraldi, R., Poli, F., & Biondi, S. (2007). Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia, 78(5), 345-352. http://doi.org/https://doi.org/10.1016/j.fitote.2007.02.001
Bhatt, I. D., & Dhar, U. (2004). Factors controlling micropropagation of Myrica esculenta buch. – Ham. ex D. Don: a high value wild edible of Kumaun Himalaya. African Journal of Biotechnology, 3(10), 534-540. http://doi.org/10.5897/AJB2004.000-2097
Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant Science, 161(5), 839-851. http://doi.org/https://doi.org/10.1016/S0168-9452(01)00490-3
Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. http://doi.org/10.3390/molecules21070901
Cetin, E. S. (2014). Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures. Biological Research, 47(1), 37. http://doi.org/10.1186/0717-6287-47-37
Concepción, O., Nápoles, L., Pérez, A. T., Peralta, N., Hernández, M., & Trujillo, R. (2005). Efecto de tres antioxidantes en el Cultivo in Vitro de ápices de guayaba (Psidium guajava). Relación entre el origen del explante y el contenido de compiuestos fenólicos. Red de Revistas Cinetíficas de América Latina, El Caribe, España Y Portugal, 26(1), 33-39.
Cuatrecasas, J. (1967). Revision de las especies colombianas del genero Baccharis. Revista de La Academica Colombiana de Ciencias Exactas, Física Y Naturales, 13(49), 5-102.
Cuatrecasas, J. (1981). Studies in Neotropical Senecioneae. II. Transfers to genus Pentacalia of North Andean species. Phytologia., 49, 241-260. http://doi.org/10.5962/bhl.part.15138
Díaz-Piedraita, S., & Cuatrecasas, J. (1991). Nueva especie de Baccharis (Asteraceae) de Colombia. Revista de La Academica Colombiana de Ciencias Exactas, Física Y Naturales, 18(69), 127-129.
Edreva, A. (2005). The importance of non-photosynthetic pigments and cinnamic acid derivatives in photoprotection. Agriculture, Ecosystems & Environment, 106(2-3), 135-146. http://dx.doi.org/10.1016/j.agee.2004.10.002
Edreva, A., Velikova, V., Tsonev, T., Dagnon, S., Gürel, A., Aktaş, L., & Gesheva, E. (2008). Stress-protective role of secondary metabolites: diversity of functions and mechanisms. General and Applied Plant Physiology, 34(1-2), 67-78. http://doi.org/10.1093/aob/mcn125
Gené, R. M., Cartaña, C., Adzet, T., Marín, E., Parella, T., & Cañigueral, S. (1996). Anti-inflammatory and analgesic activity of Baccharis trimera: identification of its active constituents. Planta Medica, 62(3), 232-235. http://doi.org/10.1055/s-2006-957866
Germ, M., Stibilj, V., Kreft, S., Gaberščik, A., & Kreft, I. (2010). Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chemistry, 122(3), 471-474. https://doi.org/10.1016/j.foodchem.2010.03.008
Gil, M., Pontin, M., Berli, F., Bottini, R., & Piccoli, P. (2012). Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry, 77, 89-98. https://doi.org/10.1016/j.phytochem.2011.12.011
Giri, C. C., & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell, Tissue and Organ Culture (PCTOC), 126(1), 1-18. http://doi.org/10.1007/s11240-016-0985-6
Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504. http://dx.doi.org/10.1016/S0031-9422(00)00235-1
Irchhaiya, R., Kumar, A., Yadav, A., Gupta, N., Kumar, S., Gupta, N., … Gurjar, H. (2015). Metabolites in Plants and Its Classification. World Journal of Pharmacy and Pharmaceutical Sciences, 4(1), 287-305.
Kajiki, F. O., & Shepherd, S. L. K. (2006). Micropropagação Da Espécie Nativa Baccharis tridentata Vahl. (Asteraceae). Revista Brasileira de Plantas Medicinais, 8(2), 42-47.
Khan, K. Y., Khan, M. A., Niamat, R., Munir, M., Fazal, H., & Mazari, P. (2011). Element content analysis of plants of genus Ficus using atomic absorption spectrometer. African Journal of Pharmacy and Pharmacology, 5(March), 317-321. http://doi.org/10.5897/AJPP10.339
Khan, M. Y. M. Y., Aliabbas, S., Kumar, V., & Rajkumar, S. (2009). Recent advances in medicinal plant biotechnology. Indian Journal of Biotechnology, 8(January), 9-22. Retrieved from isi:000264540700001
Kotilainen, T., Tegelberg, R., Julkunen-Tiitto, R., Lindfors, A., & Aphalo, P. J. (2008). Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics. Global Change Biology, 14(6), 1294-1304. http://doi.org/10.1111/j.1365-2486.2008.01569.x
Kurmukov, A. G. (2013). Phytochemistry of medicinal plants. Medicinal Plants of Central Asia: Uzbekistan and Kyrgyzstan, 1(6), 13-14. http://doi.org/10.1007/978-1-4614-3912-7_4
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., … Chen, S. (2016). An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules, 21(10), 1374. http://doi.org/10.3390/molecules21101374
Logemann, E., Tavernaro, A., Schulz, W., Somssich, I. E., & Hahlbrock, K. (2000). UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proceedings of the National Academy of Sciences , 97(4), 1903-1907. http://doi.org/10.1073/pnas.97.4.1903
Londhe, J. S., Devasagayam, T. P., Foo, L. Y., & Ghaskadbi, S. S. (2009). Radioprotective properties of polyphenols from Phyllanthus amarus Linn. J Radiat Res, 50(4), 303-309. http://doi.org/10.1269/jrr.08096
Luis, J. C., Pérez, R. M., & González, F. V. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chemistry, 101(3), 1211-1215. https://doi.org/10.1016/j.foodchem.2006.03.023
Manaf, H. H., Rabie, K. A. E., & Abd El-Aal, M. S. (2016). Impact of UV-B radiation on some biochemical changes and growth parameters in Echinacea purpurea callus and suspension culture. Annals of Agricultural Sciences, 61(2), 207-216. http://dx.doi.org/10.1016/j.aoas.2016.08.001
Mejía-Giraldo, J., Gallardo, C. & Puertas-Mejía, M. (2015). In vitro photoprotection and antioxidant capacity of Sphagnum meridense extracts, a novel source of natural sunscreen from the mountains of Colombia. Pure and Applied Chemistry, 87(9-10), pp. 961-970. http://doi.org/10.1515/pac-2015-0302
Mejía-Giraldo, J. C., Henao-Zuluaga, K., Gallardo, C., Atehortúa, L., & Puertas-Mejía, M. A. (2016). Novel In Vitro Antioxidant and Photoprotection Capacity of Plants from High Altitude Ecosystems of Colombia. Photochemistry and Photobiology, 92(1), 150-157. http://doi.org/10.1111/php.12543
Mejía-Giraldo, J. C., Winkler, R., Gallardo, C., Sánchez-Zapata, A. M., & Puertas-Mejía, M. A. (2016). Photoprotective Potential of Baccharis antioquensis (Asteraceae) as Natural Sunscreen. Photochemistry and Photobiology, 92(5), 742-752. http://doi.org/10.1111/php.12619
Moga, A. M., Dimienescu, G. O., Arvatescu, A. C., Mironescu, A., Dracea, L., & Ples, L. (2016). The Role of Natural Polyphenols in the Prevention and Treatment of Cervical Cancer—An Overview. Molecules, 21(8), 1055 . http://doi.org/10.3390/molecules21081055
Moore, B. D., Andrew, R. L., Külheim, C., & Foley, W. J. (2014). Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist, 201(3), 733-750. http://doi.org/10.1111/nph.12526
Puertas-Mejía, M. A., Rincón-Valencia, S., & Mejía-Giraldo, J. C. (2015). Screening of UVA/UVB absorption and in vitro antioxidant capacity of bejaria aestuans, cavendishia pubescens and cavendishia bracteata leaf extracts. Research Journal of Medicinal Plant, 9(8), 435-441. http://doi.org/10.3923/rjmp.2015.435.441
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
Ramani, S., & Jayabaskaran, C. (2008). Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. Journal of Molecular Signaling, 3, 9. http://doi.org/10.1186/1750-2187-3-9
Sun, M., Gu, X., Fu, H., Zhang, L., Chen, R., Cui, L., … Tian, J. (2010). Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innovative Food Science & Emerging Technologies, 11(4), 672-676. https://doi.org/10.1016/j.ifset.2010.08.006
Veraplakorn, V. (2016). Micropropagation and callus induction of Lantana camara L. – A medicinal plant. Agriculture and Natural Resources, 50(5), 338-344. http://doi.org/10.1016/j.anres.2016.12.002
Zu, Y., Pang, H.-H., Yu, J.-H., Li, D.-W., Wei, X.-X., Gao, Y.-X., & Tong, L. (2010). Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. Journal of Photochemistry and Photobiology B: Biology, 98(2), 152-158. http://dx.doi.org/10.1016/j.jphotobiol.2009.12.001
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2018 Revista de Biología Tropical