Resumen
Este artículo es una revisión bibliográfica sobre las funciones ecológicas que caracterizan a los bambúes, por las cuales merecen un mayor reconocimiento e inclusión en los programas de restauración ecológica. Los bambúes son un grupo de plantas muy diverso, de amplia distribución geográfica y económicamente importante. Aunque son más reconocidos por los usos comerciales, su potencial de uso en programas de restauración ecológica es prometedor, ya que pueden ser eficientes en la prestación de varios servicios ambientales relacionados con el suelo, el agua y el secuestro de carbono. Su rápido crecimiento, junto con su capacidad para controlar la erosión y mantener el agua a nivel del suelo, así como para proporcionar nutrientes mediante la descomposición de la hojarasca, convierte a los bambúes en un grupo valioso para la recuperación de áreas degradadas y para la restauración productiva de ecosistemas, en particular a través de sistemas agroforestales. Los enfoques agroforestales pueden combinar diferentes especies de bambú con otros cultivos, para satisfacer las necesidades humanas y generar a la vez beneficios para los ecosistemas. De manera similar, los bosques o plantaciones de bambúes, junto con sistemas agroforestales mixtos, pueden actuar como áreas de conexión y corredores biológicos, en paisajes muy fragmentados, proporcionando refugio y alimento para una amplia diversidad de organismos. A pesar de las percepciones de que los bambúes pueden ser invasivos, las pruebas para apoyar esto son limitadas. Recomendamos una evaluación cuidadosa de las características biológicas de las especies de bambúes seleccionadas, antes de su implementación en proyectos de restauración productiva y de recuperación de los servicios ambientales.
Citas
Abhilash, J. (2016). Bamboo: a natural resource for mankind - an overview. International Journal of Current Agricultural Science, 6(7), 81-83. DOI: 10.2514/6.2009-3916
Acharya, S. K., Gupta, M., Mishra, G. C., & Biswas, A. (2016). Bamboo: The Economy-Ecology - Sociology. In S. K. Acharya, G. Moumita, A. Biswas, & G. C. Mishra (Eds.), Bamboo in North-East India: The Ecology, Economy and Culture (pp. 24-60). New Delhi, India: Krishi Sanskriti Publications.
Ashraf, M., Zulkifli, R., Sanusi, R., Tohiran, K. A., Terhem, R., Moslim, R., … Azhar, B. (2018). Alley-cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agriculture, Ecosystems and Environment, 260, 19-26. DOI: 10.1016/j.agee.2018.03.017
Athiê, S., & Dias, M. M. (2016). Use of perches and seed dispersal by birds in an abandoned pasture in the Porto Ferreira state park, southeastern Brazil. Brazilian Journal of Biology, 76(1), 80-92. DOI: 10.1590/1519-6984.13114
Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24(3), 223-234. DOI: 10.1111/j.1475-2743.2008.00169.x
Banik, R. (2015). Morphology and Growth. In W. Liese & M. Köhl (Eds.), Bamboo: The plant and its uses (pp. 43-90). New York, USA: Springer.
Behari, B., Aggarwal, R., Singh, A. K., & Banerjee, S. K. (2000). Vegetation development in a degraded area under bamboo based agro-forestry system. The Indian Forester, 126(7), 710-720.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365-377. DOI: 10.1111/j.1461-0248.2011.01736.x
Ben-zhi, Z., Mao-yi, F., Jin-zhong, X., Xiao-sheng, Y., & Zheng-cai, L. (2005). Ecological functions of bamboo forest: Research and Application. Journal of Forestry Research, 16(2), 143-147. DOI: 10.1007/BF02857909
Buckingham, K., Jepson, P., Wu, L., Rao, I. V. R., Jiang, S., Liese, W., … Fu, M. (2011). The potential of bamboo is constrained by outmoded policy frames. Ambio, 40(5), 544-548. DOI: 10.1007/s13280-011-0138-4
Bystriakova, N., Kapos, V., & Lysenko, I. (2004). Bamboo biodiversity: Africa, Madagascar and the Americas. DOI: 10.1111/j.1467-6346.2008.01593.x
Cairo-Cairo, P., Yera-Yera, Y., Torres-Artiles, P., Rodríguez-Urrutia, A., Gatorno-Muñoz, S., Rodríguez-López, O., Jiménez-Carrazana, R., & Pérez, J. (2017). Impact of Bamboo (Bambusa vulgaris Schrader ex. Wendlan) on soil, Bayamo River subbasin, Cuba. Revista Centro Agrícola, 44(2), 92-94.
Camargo, J., Arango, A., Maya, J., & Bueno, J. (2018). Latin America. In FAO & INBAR (Eds.), Bamboo for land restoration (pp. 55-67). Beijing, China: INBAR.
Camargo, J., Chará, J., Giraldo, L., Chará, M., & Pedraza, G. (2010). Beneficios de los corredores ribereños de Guadua angustifolia en la protección de ambientes acuáticos en la Ecorregión cafetera de Colombia. 1 Efectos sobre las propiedades del suelo. Recursos Naturales y Ambiente, 61, 53-59.
Camargo, J., Rodríguez, J., & Arango, A. (2010). Crecimiento y fijación de carbono en una plantación de guadua en la zona cafetera de Colombia. Recursos Naturales y Ambiente, 61, 86-94.
Ceccon, E. (2003). Los bosques ribereños y la restauración y conservación de las cuencas hidrográficas. Ciencias, 72, 46-72.
Ceccon, E. (2013). Restauración en ecosistemas tropicales: Fundamentos ecológicos, prácticos y sociales. Ciudad de México, México: UNAM-Ediciones Díaz de Santos.
Ceccon, E., & Varassin, I. G. (2014). Plant-pollinator interactions in ecosystems restoration. In M. Benítez, O. Miramontes, & A. Valiente-Banuet (Eds.), Frontiers in Ecology, Evolution and Complexity (pp. 50-63). Ciudad de México, Mexico: Copit-arXives. DOI: 10.1039/c39900001550
Chará, J., Giraldo-Sánchez, L. P., Chará-Serna, A. M., & Pedraza, G. X. (2010). Beneficios de los corredores ribereños de Guadua angustifolia en la protección de corredores acuáticos en la Ecorregión a Cafetera de Colombia. 2. Efectos sobre la escorrentía y captura de nutrientes. Recursos Naturales y Ambiente, 61, 60-66.
Chazdon, R. L., Harvey, C. A., Komar, O., Griffith, D. M., Ferguson, B. G., Martínez-Ramos, M., … Philpott, S. M. (2009). Beyond reserves: A research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica, 41(2), 142-153. DOI: 10.1111/j.1744-7429.2008.00471.x
Christanty, L., Mailly, D., & Kimmins, J. P. (1996). “Without bamboo, the land dies”: Biomass, litterfall, and soil organic matter dynamics of a Javanese bamboo talun-kebun system. Forest Ecology and Management, 87(1-3), 75-88. DOI: 10.1016/S0378-1127(96)03834-0
Clark, L. G., Londoño, X., & Ruiz-Sánchez, E. (2015). Bamboo Taxonomy and Habitat. In W. Liese & M. Köhl (Eds.), Bamboo: The plant and tis uses (pp. 1-30). New York: Springer. DOI: 10.1007/978-3-319-14133-6_1
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., … Likens, G. E. (2009). Controlling eutrophication: Nitrogen and Phosphorus. Science, 323(5917), 1014-1015. DOI: 10.1126/science.1167755
Eashwar, K. P. (2018). India. In FAO & INBAR (Eds.), Bamboo for land restoration (pp. 34-39). Beijing, China: INBAR.
Emamverdian, A., Ding, Y., & Xie, Y. (2018). Phytoremediation potential of bamboo plant in China. Ecology, Environment and Conservation, 24(1), 530-539.
Falcy, M. R., & Estades, C. F. (2007). Effectiveness of corridors relative to enlargement of habitat patches. Conservation Biology, 21(5), 1341-1346. DOI: 10.1111/j.1523-1739.2007.00766.x
FAO, & INBAR. (2018). Bamboo for land restoration. INBAR Policy Synthesis Report 4. Beijing, China. Retrieved from https://resource.inbar.int/download/showdownload.php?lang=cn&id=167937
Flores-Ramírez, E., & Ceccon, E. (2014). La restauración de corredores en paisajes fragmentados ¿mejora la dinámica de las especies? Evidencias experimentales. In A. S. Álvarez, & D. R. Pérez (Eds.), Aspectos ecológicos, microbiológicos y fisiológicos de la restauración de ambientes degradados de zonas áridas. Aportes de investigaciones de Argentina, Chile, Venezuela y México (pp. 11-24). Mendoza, Argentina: Ministerio de Educación de la Nación y CONYCET.
Fu, M., Jianghua, X., & Yiping, L. (2000). Cultivation and utilization on bamboo. Beijing: China Forestry Publishing House.
Giraldo-Herrera, E. (2008). Bienes y servicios ambientales de la guadua en Colombia (Guadua angustifolia Kunth). Boletín informativo mensual No. 12 de la Red Internacional de Bambú y Ratán INBAR. Oficina Regional para América Latina y el Caribe.
Gómez-Ruiz, P. A., & Lindig-Cisneros, R. (2017). La restauración ecológica clásica y los retos de la actualidad: La migración asistida como estrategia de adaptación al cambio climático. Revista de Ciencias Ambientales, 51(2), 31-51. DOI: 10.15359/rca.51-2.2
Greig, C., Robertson, C., & Lacerda, A. E. B. (2018). Spectral-temporal modelling of bamboo-dominated forest succession in the Atlantic Forest of Southern Brazil. Ecological Modelling, 384, 316-332. DOI: 10.1016/j.ecolmodel.2018.06.028
Holl, K. D. (1998). Do bird perching structures elevate seed rain and seedling establishment in abandoned tropical pasture? Restoration Ecology, 6(3), 253-261. DOI: 10.1046/j.1526-100X.1998.00638.x
Huang, K., Liang, D., & Zeng, Z. (1994). Rhizome distribution of Phyllostachys makinoi. Journal of Fujian Forestry College, 14(3), 191-194.
Ibrahim, M., & Camargo, J. C. (2001). Sistemas Agroflorestais Pecuários: opções de sustentabilidade para áreas tropicais e subtropicais. In M. M. Carvalho, M. J. Alvim, & J. C. Carneiro (Eds.), Sistemas Agroflorestais Pecuários: opções de sustentabilidade para áreas tropicais e subtropicais (pp. 331-347). Brasilia, Brasil: Ministério da Agricultura Pecuária e Abastecimento - FAO.
Judziewicz, E., Clark, L. G., Londoño, X., & Stern, M. J. (1999). American bamboos. Washington D.C.: Smithsonian Institute Press.
Krishnankutty, C. N. (2004). Benefit-cost analysis of bamboo in comparison with other crops in mixed cropping home gardens in Kerala State, India. Journal of Bamboo and Rattan, 3(2), 99-106. DOI: 10.1163/156915904774195106
Kuehl, Y. (2015). Resources, Yield, and Volume of Bamboos. In W. Liese & M. Köhl (Eds.), Bamboo: The plant and its uses (pp. 91-112). New York: Springer. DOI: 10.1007/978-3-319-14133-6_4
Lacerda, A. E. B., & Kellermann, B. (2017). Bambus nativos como espécies invasoras no sul do Brasil. In P. M. Drumond & G. Wiedman (Eds.), Bambus no Brasil: da biologia à tecnologia (pp. 179-196). Rio de Janeiro, Brasil: Instituto Ciência Hoje.
Laestadius, L., Maginnis, S., Minnemeyer, S., Potapov, P., Saint-Laurent, C., & Sizer, N. (2011). Mapping opportunities for forest landscape restoration. Unasylva, 62(2), 47-48.
Leitão, F. H. M., Marques, M. C. M., & Ceccon, E. (2010). Young restored forests increase seedling recruitment in abandoned pastures in the Southern Atlantic rainforest. Revista de Biologia Tropical, 58(4), 1271-1282.
Liese, W. (2009). Bamboo as carbon sink - fact or fiction? Journal of Bamboo and Rattan, 8(3/4), 103-114.
Lieurance, D., Cooper, A., Young, A. L., Gordon, D. R., & Flory, S. L. (2018). Running bamboo species pose a greater invasion risk than clumping bamboo species in the continental United States. Journal for Nature Conservation, 43, 39-45. DOI: 10.1016/j.jnc.2018.02.012
Lima, R. A. F., Rother, D. C., Muler, A. E., Lepsch, I. F., & Rodrigues, R. R. (2012). Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biological Conservation, 147(1), 32-39. DOI: 10.1016/j.biocon.2012.01.015
Lin, Y., Li, H., & Lin, P. (2000). Biomass structure and energy distribution of Dendrocalamus latiflorus population. Journal of Bamboo Research, 19(4), 36-41.
Liu, D., Li, S., Islam, E., Chen, J., Wu, J., Ye, Z., … Lu, K. (2015). Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 16(2), 123-130. DOI: 10.1631/jzus.b1400107
Liu, W., Fox, J. E. D., & Xu, Z. (2000). Leaf litter decomposition of canopy trees, bamboo and moss in a montane moist evergreen broad-leaved forest on Ailao Mountain, Yunnan, south-west China. Ecological Research, 15, 435-447. DOI: 10.1046/j.1440-1703.2000.00366.x
Liu, Y., Zhou, G., Du, H., Berninger, F., Mao, F., Li, X., … Xu, L. (2018). Response of carbon uptake to abiotic and biotic drivers in an intensively managed Lei bamboo forest. Journal of Environmental Management, 223, 713-722. DOI: 10.1016/j.jenvman.2018.06.046
Lobovikov, M., Schoene, D., & Yping, L. (2012). Bamboo in climate change and rural livelihoods. Mitigation and Adaptation Strategies for Global Change, 17(3), 261-276. DOI: 10.1007/s11027-011-9324-8
Martin, T. G., & Watson, J. E. M. (2016). Intact ecosystems provide best defence against climate change. Nature Climate Change, 6, 122-124. DOI: 10.1038/nclimate2918
MEA. (2005). Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. DOI: 10.1196/annals.1439.003
Mishra, G., Giri, K., Panday, S., Kumar, R., & Bisht, N. S. (2014). Bamboo: potential resource for eco-restoration of degraded lands. Journal of Biology and Earth Sciences, 4(2), B130-B136.
Nath, J. A., Das, G., & Das, A. K. (2009). Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass and Bioenergy, 33(9), 1188-1196. DOI: 10.1016/j.biombioe.2009.05.020
Nirala, D., Kumar, J., Ahmad, M., & Kumari, P. (2018). Bamboo based agroforestry system for livelihood and ecological security in North Chhotanagpur division of Jharkhand. Journal of Pharmacognosy and Phytochemistry, SP1, 1996-1999.
Paudyal, B. R. (2018). Nepal. In FAO & INBAR (Eds.), Bamboo for land restoration (pp. 40-50). Beijing, China: INBAR.
Pérez-García, N., Rueda-González, M., Rojo-Martínez, G., Martínez-Ruíz, R., Ramírez-Valverde, B., & Juárez-Sánchez, J. (2009). El bambú (Bambusa spp.) como sistema agroforestal: una alternativa de desarrollo mediante el pago por servicios ambientales en la sierra nororiental del estado de Puebla. Ra Ximhai, 5(3), 335-346.
Platt, S. G., Ko Ko, W., Myo Myo, K., Khaing, L. L., Platt, K., Maung, A., & Rainwater, T. (2010). Notes on Melocanna baccifera and bamboo brakes in the Rakhine Hills of western Myanmar. Bamboo Science and Culture: The Journal of the American Bamboo Society, 23(1), 1-12.
Rebelo, C., & Buckingham, K. (2015). Bamboo: The opportunities for forest and landscape restoration. Unasylva, 66(3), 91-98.
Reid, S., Diaz, I. A., Armesto, J. J., & Willson, M. F. (2004). Importance of native bamboo for understory birds in Chilean temperate forests. The Auk, 121(2), 515-525. DOI: 10.1642/0004-8038(2004)121
Rodríguez, R. M., Galicia, S. L., Sánchez, W., Gómez, M. L., Zarco, A. A. E., & Ceccon, E. (2010). Usos actuales, distribución potencial y etnolingüística de los bambúes leñosos (Bambuseae) en México. In M. Pochettino, A. Ladio, & P. Arenas (Eds.), Tradiciones & transformaciones en Etnobotánica (pp. 355-363). CYTED - Programa Iberoamericano Ciencia y Tecnología para el Desarrollo.
Sánchez, G., & Alvarez-Sánchez, J. (1995). Litterfall in primary and secondary tropical forests of Mexico. Tropical Ecology, 36(2), 191-201.
Schoonover, J. E., & Williard, K. W. J. (2003). Ground water nitrate reduction in giant cane and forest riparian buffer zones. Journal of the American Water Resources Association, 39(2), 347-354. DOI: 10.1111/j.1752-1688.2003.tb04389.x
Scurlock, J. M. O., Dayton, D. C., & Hames, B. (2000). Bamboo: An overlooked biomass resource? Biomass and Bioenergy, 19(4), 229-244. DOI: 10.1016/S0961-9534(00)00038-6
Singh, A. N., & Singh, J. S. (1999). Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecology and Management, 119(1-3), 195-207. DOI: 10.1016/S0378-1127(98)00523-4
Society for Ecological Restoration International Science & Policy Working Group. (2004). The SER International Primer on Ecological Restoration.
Song, X., Zhou, G., Jiang, H., Yu, S., Fu, J., Li, W., … Peng, C. (2011). Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environmental Reviews, 19, 418-428. DOI: 10.1139/a11-015
Song, Z., Liu, H., Strömberg, C. A. E., Wang, H., Strong, P. J., Yang, X., & Wu, Y. (2018). Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China. Science of the Total Environment, 615, 1-8. DOI: 10.1016/j.scitotenv.2017.09.253
Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866-880. DOI: 10.1111/ele.12277
Stern, M. J. (1995). An inter-Andean forest relict: vegetation change on Pasochoa and Volcano, Ecuador. Mountain Research and Development, 15, 339-348. DOI: 10.2307/3673810
Taylor, A. H., & Zisheng, Q. (1987). Culm dynamics and dry matter production of bamboos in the Wolong and Tangjiahe Giant Panda Reserves, Sichuan, China. Journal of Applied Ecology, 24(2), 419-433. DOI: Doi 10.2307/2403884
Tewari, S., Banik, R., Kaushal, R., Bhardwaj, D., Chaturvedi, O., & Gupta, A. (2015). Bamboo Based Agroforestry Systems. Dehradun, India: ENVIS Centre on Forestry.
Toledo-Bruno, A. G., Marin, R. A., & Medina, M. A. (2017). Ecology of litterfall production of giant bamboo Dendrocalamus asper in a watershed area. Global Journal of Environmental Science and Management, 3(4), 363-372. DOI: 10.22034/GJESM.2017.03.04.003
Tripathi, S. K., & Singh, K. P. (1992). Abiotic and litter quality control during the decomposition of different plant parts in dry tropical bamboo savanna in India. Pedobiologia, 36(4), 241-256.
Tripathi, S. K., Sumida, A., Shibata, H., Ono, K., Uemura, S., Kodama, Y., & Hara, T. (2006). Leaf litterfall and decomposition of different above- and belowground parts of birch (Betula ermanii) trees and dwarf bamboo (Sasa kurilensis) shrubs in a young secondary forest in Northern Japan. Biology and Fertility of Soils, 43(2), 237-246. DOI: 10.1007/s00374-006-0100-y
Uezu, A., Beyer, D. D., & Metzger, J. P. (2008). Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodiversity and Conservation, 17(8), 1907-1922. DOI: 10.1007/s10531-008-9329-0
Veblen, T. T., Schlegel, F. M., & Escobar, R. (1980). Dry-Matter Production of Two Species of Bamboo (Chusquea Culeou and C. Tenuiflora) in South-Central Chile. Journal of Ecology, 68(2), 397-404. DOI: 10.2307/2259412
Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R., & Baker, W. J. (2016). World Checklist of Bamboos and Rattans. Beijing, China: INBAR.
Wang, G., Innes, J. L., Dai, S., & He, G. (2008). Achieving sustainable rural development in Southern China: the contribution of bamboo forestry. International Journal of Sustainable Development & World Ecology, 5, 484-495. DOI: 10.3843/susdev.15.5:9
Xu, Y., Wong, M., Yang, J., Ye, Z., Jiang, P., & Zheng, S. (2011). Dynamics of Carbon Accumulation During the Fast Growth Period of Bamboo Plant. The Botanical Review, 77(3), 287-295. DOI: 10.1007/s12229-011-9070-3
Yanxia, L., & Yiping, L. (2018). Asia. In FAO & INBAR (Eds.), Bamboo for land restoration (pp. 25-29). Beijing, China: INBAR.
Yiping, L., Yanxia, L., Buckingham, K., Henley, G., & Guomo, Z. (2010). Bamboo and Climate Change Mitigation. Beijing, China: INBAR.
Yuen, J. Q., Fung, T., & Ziegler, A. D. (2017). Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. Forest Ecology and Management, 393, 113-138. DOI: 10.1016/j.foreco.2017.01.017
Zhou, G., Meng, C., Jiang, P., & Xu, Q. (2011). Review of Carbon Fixation in Bamboo Forests in China. Botanical Review, 77(3), 262-270. DOI: 10.1007/s12229-011-9082-z
Zhou, G., Wu, J., & Jiang, P. (2006). Effects of different management models on carbon storage in Phyllostachys pubescens forests. Journal of Beijing Forestry University, 28(6), 51-55.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2019 Pilar Angelica Gómez Ruiz, Eliane Ceccon