Resumen
Introduction: Carbon dioxide emissions from mangrove soils have a potential impact on the global carbon balance. They are related to anthropic actions and natural processes with interspecific interactions involving physical-chemical and environmental variables. Objective: In this research, the seasonality of carbon dioxide emissions related to different strata of mangrove vegetation, soil physical-chemical makeup and physical environmental factors were evaluated. Methods: Nine plots of 20 x 20 m were demarcated (three for each of the three vegetation strata) in the Experimental Site of the Federal Rural University of the Amazon and the Federal University of Pará in Cuiarana, Salinópolis, Pará, Brazil. Duplicate soil samples were taken from each plot during three consecutive seasonal periods and analyzed in the laboratory. Carbon dioxide emissions were monitored for 88 days through the basal breathing of the soil methodology; other variables evaluated were soil moisture and temperature, hydrogenic potential, redox potential, carbon and nitrogen of the microbial biomass, organic matter and composition of sand, silt and clay. Precipitation data was obtained from the CMORPH technique of the Climate Forecast Center - NOAA. Information on tides was obtained from the Brazilian Navy’s Fundeadouro de Salinópolis. Results: The results showed that the highest carbon dioxide emissions occurred in the rainy season 2017 on average 7.5 (14.5 TCO2 ha/year) mg/100 cm3. With 10.5 mg/100 cm3 (21 TCO2 ha/year), the adult stratum was the largest source of emissions. The highest seasonal correlations of the emissions in relation to the incubation intervals occurred in the rainy season, in the adult stratum the days 1,2,3,4,3,3 and 5. Using principal component analysis (PCA) it was found that the highest correlations of carbon dioxide emissions and physical-chemical variables occurred in the adult stratum with 56 % variance. The highest correlations were found with the variables soil moisture, Ph, organic matter, carbon and microbial nitrogen. The Kruskal-Wallis test corroborated these results, indicating significant differences between vegetation strata and CO2 emissions (P= 0.0170); and the Tukey test confirmed greater statistical importance of the adult mangrove in relation to the other strata (P= 0.0140). Conclusions: In the three analyzed stations, the highest emissions occurred in the rainy period with an average of 14.5 TCO2 ha/year and the adult stratum was responsible for the highest emissions registering 21 TCO2 ha/year difference that was statistically significant with the other strata (P = 0.0140).
Citas
Alongi, D. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313-322. DOI: https://doi.org/doi: 10.4155/cmt.12.20
Anderson, T. H., & Domsch, K. H. (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as ph, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25(3), 393-395. DOI: https://doi.org/10.1016/0038-0717(93)90140-7
Berrêdo, J. F., Costa, M. L. da, Vilhena, M. do P. S. P., & Santos, J. T. dos. (2018). Mineralogia e geoquímica de sedimentos de manguezais da costa amazônica: o exemplo do estuário do rio Marapanim (Pará). Revista Brasileira de Geociências, 38(1), 24-35. DOI: https://doi.org/10.25249/0375-7536.20083812435
Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences, 7(6), 1915-1926. DOI: https://doi.org/10.5194/bg-7-1915-2010
Das, S., Ganguly, Ray, R., Jana, T. K., & Tarun Kumar, D. (2017). Microbial activity determining soil CO emission in the Sundarban mangrove forest, India. Tropical Ecology, 58(3), 525-537.
De Souza Costa, F., Bayer, C., Zanatta, J. A., & Mielniczuk, J. (2008). Estoque de carbono orgânico no solo e emissões de dióxido de carbono influenciadas por sistemas de manejo no sul do Brasil. Revista Brasileira de Ciencia Do Solo, 32(1), 323-332.
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293-297. DOI: https://doi.org/10.1038/ngeo1123
Doran, J. W., & Parkin, T. B. (1994). Defining an assesing soil quality. In J. W. Doran, & T. B. Parking (Eds.), Defining Soil Quality for a Sustainable Environment (pp. 3-21). Madison, WI, U.S.A.: Soil Science Society of America and American Society of Agronomy.
Fiedler, S. R., Buczko, U., Jurasinski, G., & Glatzel, S. (2015). Soil respiration after tillage under different fertiliser treatments - implications for modelling and balancing. Soil and Tillage Research, 150, 30-42. DOI: https://doi.org/10.1016/j.still.2014.12.015
Holguin, G., Vazquez, P., & Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biology and Fertility of Soils, 33(4), 265-278. DOI: https://doi.org/10.1007/s003740000319
Houghton, R. A. (2003). Why are differences in the terrestrial carbon balance so different? Global Change Biology, 9(4), 500-509.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. Journal of Hydrometeorology, 5, 487-503.
Keuskamp, J. A., Hefting, M. M., Dingemans, B. J. J., Verhoeven, J. T. A., & Feller, I. C. (2015). Effects of nutrient enrichment on mangrove leaf litter decomposition. Science of the Total Environment, 508, 402-410.
Kim, D. G., Vargas, R., Bond-Lamberty, B., & Turetsky, M. R. (2012). Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences, 9(7), 2459-2483. DOI: https://doi.org/10.5194/bg-9-2459-2012
Lallier-Vergès, E., Marchand, C., Disnar, J. R., & Lottier, N. (2008). Origin and diagenesis of lignin and carbohydrates in mangrove sediments of Guadeloupe (French West Indies): Evidence for a two-step evolution of organic deposits. Chemical Geology, 255, 388-398. DOI: https://doi.org/10.1016/j.chemgeo.2008.07.009
Lang’at, J. K. S., Kairo, J. G., Mencuccini, M., Bouillon, S., Skov, M. W., Waldron, S., & Huxham, M. (2014). Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE, 9, 1-8. DOI: https://doi.org/10.1371/journal.pone.0107868
Liblik, L. K., Moore, T. ., Bubier, J. L., & Robinson, S. D. (1997). Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Global Biogeochemical Cycles, 11(4), 485-494.
Lovelock, C. E., Atwood, T., Baldock, J., Duarte, C. M., Hickey, S., Lavery, P. S., … Steven, A. (2017). Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment, 15(5), 257-265. DOI: https://doi.org/10.1002/fee.1491
Martins, F. R., & Matthes, L. A. F. (1978). Respiração edáfica e nutrientes na Amazônia (Região de Manaus): floresta arenícola, campinarana e campina. Acta Amazonica, 8(2), 233-244.
de Sá Mendonça, E., & da Silva Matos, E. (2005). Matéria orgânica do solo: métodos de análises. Brasil: ABEAS.
Mukherjee, J., & Ray, S. (2012). Carbon cycling from mangrove litter to the adjacent Hooghly estuary, India - A modelling study. Procedia Environmental Sciences, 13, 391-413. DOI: https://doi.org/10.1016/j.proenv.2012.01.036
Nóbrega, G. N., Ferreira, O. T., Siqueira Neto, M., Queiroz, H. M., Artur, A. G., & Otero, X. L. (2016). Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil). Science of the Total Environment, 542, 685-693. DOI: https://doi.org/10.1016/j.scitotenv.2015.10.108
Otero, X. L., Méndez, A., Nóbrega, G. N., Ferreira, T. O., Santiso-Taboada, M. J., Meléndez, W., & Macías, F. (2017). High fragility of the soil organic C pools in mangrove forests. Marine Pollution Bulletin, 119(1), 460-464. https://doi.org/10.1016/j.marpolbul.2017.03.074
Poungparn, S., Komiyama, A., Tanaka, A., Sangtiean, T., Maknual, C., Kato, S., … Patanaponpaiboon, P. (2009). Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. Journal of Tropical Ecology, 25(4), 393-400. DOI: https://doi.org/10.1017/s0266467409006154
Reef, R., Feller, I. C., & Lovelock, C. E. (2010). Nutrition of mangroves. Tree Physiology, 30(9), 1148-1160. DOI: https://doi.org/10.1093/treephys/tpq048
Schaeffer-Novelli, Y., Cintrón-Molero, G., Adaime, R. R., de Camargo, T. M., Cintron-Molero, G., & de Camargo, T. M. (1990). Variability of Mangrove Ecosystems along the Brazilian Coast. Estuaries, 13(2), 204-218.DOI: https://doi.org/10.2307/1351590
Sifleet, S., Pendleton, L., & Murray, B. (2011). State of the Science on Coastal Blue Carbon A Summary for Policy Makers (Technical report). U.S.A.: Nicholas Institute for Environmental Policy Solutions-Duke University.
Silveira, J. A. H., Rico, A. C., Pech, E., Pech, M., Ramírez, J., & Teutli, C. (2016). Carbon Dynamics ( Stocks and Fluxes ) in Mangroves of Mexico. Terra Latinoamericana, 34(1), 61-72.
Souza, H. F., Guedes, M. L. S., Oliveira, S. S. de, & Santos, E. S. (1996). Alguns aspectos fitossociológicos e nutricionais do manguezal da Ilha de Patí-Bahía, Brasil. Sitientibus, Feira de Santana, 15, 151-165.
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164, 80-99. DOI: https://doi.org/10.1016/j.agee.2012.10.001
Ter-Braak, C. J. (1986). Canonical correspondence analysis: a new technique for multivariate direct gradient analysis. Ecological Society of America, 67(5), 1167-1179.
Troxler, T. G., Barr, J. G., Fuentes, J. D., Engel, V., Anderson, G., Sanchez, C., & Davis, S. E. (2015). Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agricultural and Forest Meteorology, 213, 273-282. DOI: https://doi.org/10.1016/j.agrformet.2014.12.012
Valentini, C. M. A., Abreu, J. G. de, & de Faria, R. A. P. G. (2015). Respiração Do Solo Como Bioindicador Em Áreas Degradadas. Revista Internacional de Ciências, 5(2), 127-143. DOI: https://doi.org/10.12957/ric.2015.19581
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2020 Antonio castellon castellon