Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Relationship between wing morphology and habitat use in six species of Neotropical doves (Columbidae).
PDF
HTML

Keywords

Aerodynamic parameters; Flight behavior; Habitat effect; Pigeons; Wing shape.
Parámetros aerodinámicos; comportamiento de vuelo; Efecto de Hábitat; Palomas; forma del ala.

How to Cite

Ocampo, D., Alvarado, A., Álvarez, M.-J., Ríos-Acuña, J.-A., Barrantes, G., & Sandoval, L. (2019). Relationship between wing morphology and habitat use in six species of Neotropical doves (Columbidae). Revista De Biología Tropical, 67(S2), S315–S325. https://doi.org/10.15517/rbt.v67i2SUPL.37254

Abstract

Biomechanics, behavior, and natural history influence wing dimension and shape. Wing design often correlates with features of the habitat in which each species is found. Doves and pigeons (Columbidae family) range from long-distance fliers (e.g., canopy and open area species) to very short-distance fliers (e.g., species adapted to dense understory forests) and such variation makes this group fit to test the association between flying habits and wing morphology. Our objective in this study is to determine whether the wing morphology (shape and dimensions) of six dove species is associated to their flying capability. We predict that the long-distance fliers Patagioenas flavirostris and P. nigrirostris will have long and sharp wings; while the very short-distance flier Geotrygon montana will have broad and rounded wings. Other species (e.g., Leptotila verreauxi, L. cassini and Zenaida asiatica) whose flying capability fits in between these two will have wings with intermediate morphological features. We measured the wing disc loading, shape ratio, the ratio of mean to maximum wing chord, relative wing length, and wing area for each species. We conducted a discriminant function analysis to compare which variables explain better the differences in wing morphology across the six species, and used a binomial test to evaluate the power of the model. The model correctly classified 57 % of individuals within their own species. The flying capability is associated with the wing morphology of the six Columbidae species; with a wing design for long-distance fliers in P. flavirostris and P. nigrirostris, wing design for maneuvering in dense habitats in G. montana, and wings with an intermediate design in L. verreauxi, L. cassini and Z. asiatica.

https://doi.org/10.15517/rbt.v67i2SUPL.37254
PDF
HTML

References

Arizaga, J., Campos, F., & Alonso, D. (2006). Variation in wing morphology among subspecies might reflect different migration distances in Bluethroated. Ornis Fennica, 83, 162-169.

Baptista, L. F., Trail, P. W., & Horblit, H. M. (1997). Pigeons, Doves (Columbidae). In J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, & E. de Juana (Eds.), Handbook of the Birds of the World Volume 4: Sandgrouse to Cuckoos (pp. 60-243). Barcelona, Spain: Lynx Edicions.

Corvidae, E. L., Bierregaard, R. O., & Peters, S. E. (2006). Comparison of wing morphology in three birds of prey: correlations with differences in flight behavior. Journal of Morphology, 267, 612-622. DOI: 10.1002/jmor.10425

Dial, K. P. (1992). Avian forelimb muscles and nonsteady flight: can birds fly without using the muscles in their wings?. Auk, 109, 874-885. DOI: 10.2307/4088162

Gibbs, D., Barnes, E., & Cox, J. (2001). Pigeons and Doves. A Guide to the Pigeons and Doves of the World. New Haven, Connecticut, USA: Yale University Press.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1),1-9. Recuperado de http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491, 444-448. DOI: 10.1038/nature11631

Kirmse, W. (1998). Morphometric features characterizing flight properties of palearctic eagles. In R. D. Chancellor, B. U. Meyburg, & J. J. Ferrero (Eds.), Holarctic birds of prey (pp. 339-348). Berlin, Alemania: Proceedings of an international conference.

Lapiedra, O., Sol, D., Carranza, S., & Beaulieu, J. M. (2013). Behavioural changes and the adaptive diversification of pigeons and doves. Proceedings of the Royal Society of London B, 280, 20122893. DOI: 10.1098/rspb.2012.2893

Lockwood, R., Swaddle, J. P., & Rayner, J. M. (1998). Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. Journal of Avian Biology, 29, 273-292. DOI: 10.2307/3677110

Maddison, W. P., & Maddison, D. R. (2015). Mesquite: a modular system for evolutionary analysis (Version 3.04). Recuperado de http://mesquiteproject.org

Meade, A., & Pagel, M. (2014). BayesTraits (Version 2.0). Recuperado de http://www.evolution.rdg.ac.uk/BayesTraits.html

Norberg, U. M. (1981). Flight, morphology and the ecological niche in some birds and bats. Symposia of the Zoological Society of London, 48, 173-197.

Norberg, U. M. (1985). Flying, gliding, and soaring. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), Functional vertebrate morphology (Pp. 129-158). Cambridge, Massachusetts, USA: Harvard University Press.

Norberg, U. M. (1995). How a long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecology, 9, 48-54. DOI: 10.2307/2390089

Pennycuick, C. J. (2008). Modelling the flying bird (Vol. 5). USA: Elsevier.

Sandoval, L. (2009). Descripción del comportamiento de cuido parental en la codorniz de monte Colinus leucopogon. International Journal of Galliformes Conservation, 1, 36-40.

Savile, D. B. (1957). Adaptive evolution in the avian wing. Evolution, 11, 212-224.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675. DOI: 10.1038/nmeth.2089

Schulenberg, T. S. (1983). Foraging behavior, eco-morphology, and systematics of some antshrikes. Wilson Bulletin, 95, 505-521.

Skutch, A. F. (1991). The life of the pigeon. Ithaca, New York, USA: Comstock Publishing.

Stiles, F. G., Altshuler, D. L., & Dudley, R. (2005). Wing morphology and flight behavior of some North American hummingbird species. Auk, 122, 872-886. DOI: 10.1642/0004-8038(2005)122[0872:WMAFBO]2.0.CO;2

Stiles, G. F., & Skutch, A. F. (1989). A guide to the birds of Costa Rica. Ithaca, New York, USA: Cornell University Press.

Videler, J. J. (2005). Avian flight. Oxford, UK: Oxford University Press.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Revista de Biología Tropical

Downloads

Download data is not yet available.