Resumen
Introducción: Los estudios sobre las alteraciones morfo-anatómicas e histoquímicas ocasionadas por la Oidiosis o ceniza en hojas de Hydrangea macrophylla son escasos en la literatura científica. Objetivos: describir y analizar aspectos anatómicos e histopatológicos de este patosistema. Métodos: se tomaron más de 90 hojas de H. macrophylla sanas e infectadas por Oidiosis que se recolectaron en el vivero El Jardín del Edén, Rionegro, Antioquia-Colombia. Para la identificación del micopatógeno, las secciones obtenidas se tiñeron con azul de Lactofenol y se consultaron claves taxonómicas especializadas. Fragmentos transversales de 1 cm de grosor que se fijaron en una mezcla de formol, alcohol y ácido acético. Posteriormente, se deshidrataron en una serie de etanol, se aclararon en Xilol y finalmente, se incluyeron en Paraplast plus® para obtener secciones de 5 μm. Se utilizó la reacción del ácido peryódico de Schiff (PAS) para detectar polipolisacáridos, rojo de Rutenio para pectinas, Ponseau S y Lacmoid para calosa, Cloruro férrico para polifenoles, negro de Sudan para lípidos y Uvitex 2B-Hematoxilina para quitina. Las secciones se observaron mediante un microscopio fotónico Nikon 80i eclipse® y con epifluorescencia empleando filtro UV-2A. Para la observación con microscopía electrónica de barrido, hojas sanas e infectadas fueron fijadas y deshidratadas en metanol al 100 %, desecadas al punto crítico y recubiertas con oro. Resultados: las hojas de H. macropylla son dorsiventrales, homobáricas, con epidermis adaxial y abaxial de un solo estrato celular. El parénquima de empalizada está constituido por un estrato de células cortas. En tanto que el parénquima esponjoso forma entre 6-7 estratos celulares. Todos los haces vasculares en la lámina foliar son colaterales cerrados. Se aprecian abundantes idioblastos en el mesófilo con rafidios; el almidón es el principal carbohidrato. Las hojas son hipostomáticas de patrones paracíticos, estos son superficiales y con amplias cavidades subestomáticas. Los datos morfológicos apreciados en el micopatógeno, están relacionados con el género Erysiphe. Las células epidérmicas afectadas por el patógeno se aprecian con pared engrosada, citoplasma granular y papilas o aposiciones de la pared celular presentes en las paredes periclinales externas. Con el deterioro de la epidermis, los tejidos subyacentes se afectan y se aprecian necróticos. Los análisis histoquímicos demuestran que las plantas infectadas engrosan y refuerzan sus paredes celulares epidérmicas con materiales de pared primaria, principalmente, cutina, pectinas y calosa. La presencia de aglomerados de color oscuro teñidos con el Sudan negro, en el citoplasma de las células epidérmicas, podrían relacionarse con mecanismos de defensa de la planta y los observados en las células del mesófilo con la desorganización de los sistemas de membrana. Los polifenoles se acumulan en el citoplasma de las células epidérmicas infectadas. El material fúngico presente en los tejidos epidérmicos fue diferenciado claramente al ser teñido con el fluorocromo para quitina. Conclusiones: El agente causal de la Oidiosis o ceniza en H. macrophylla está relacionado con especies del género Erysiphe. Se aprecia necrosis de las células epidérmicas en respuesta al patógeno, que podría estar relacionado con respuestas de hipersensibilidad.
Citas
Agronegocios. (2019). Cultivo de Hortensias, un negocio con gran potencial en el Oriente Antioqueño. Obtenido de Agronegocios: www.agronegocios.co/agricultura/cultivo-de-hortensias-un-negocio-con-gran-potencial-en-el-oriente-antioqueno-2821240
Ministerio de Agricultura y Desarrollo Rural de Colombia. (2018). Estadísticas Agronet (Base de datos). Recuperado de http://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Agrios, G.N. (2005). Plant pathology. San Diego, USA: Academic Press Inc.
Ale-Agha, N., Boyle, H., Braun, U., Butin, H., Jage, H., Kummer, V., & Shin, H.D. (2013). Taxonomy, host range and distribution of some powdery mildew fungi (Erysiphales). Schlechtendalia, 17, 39-54.
An, Q., Hückelhoven, R., Kogel, K.H., & Van Bel, A.J. (2006). Multivesicular bodies participate in a cell wall‐associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cellular Microbiology, 8(6), 1009-1019.
APG IV (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society, 181, 1-20.
Arafa, A.M.S., Nower, A.A., Helme, S.S., & Abd-Elaty, H.A. (2017). Large scales of Hydrangea macrophylla using tissue culture technique. International Journal of Current Microbiology and Applied Sciences, 6(5), 776-778.
Aoun, M. (2017). Host defense mechanisms during fungal pathogenesis and how these are overcome in susceptible plants: A review. International Journal of Botany, 13, 82-102.
Aoun, M., Rioux, D., Simard, M., & Bernier, L. (2009). Fungal colonization and host defense reactions in Ulmus americana callus cultures inoculated with Ophiostoma novo-ulmi. Phytopathology, 99, 642-650.
Balint‐Kurti, P. (2019). The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology, 20(8), 1163-1178.
Basterrechea, H.G. (2005). Algunos aspectos sobre las principales especies de fitonemátodos asociadas a los cultivos de plantas ornamentales. Fitosanidad, 9(2), 49-57.
Bacete, L., Mélida, H., Miedes, E., & Molina, A. (2018). Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses. The Plant Journal, 93(4), 614-636.
Braun U, Cook RTA. 2012. Taxonomic manual of the Erysiphales (powdery mildews). The Netherlands: CBS-KNAW Fungal Biodiversity Centre.
Bhuiyan, N.H., Selvaraj, G., Wei, Y., & King, J. (2009). Role of lignification in plant defense. Plant Signaling & Behavior, 4(2), 158-159.
Calderón, M.D.P.S. (2014). Análisis de eficiencia técnica y estudio de casos en los cultivos de flores de la Sabana de Bogotá. Pensamiento & Gestión, 36, 291-326.
Camarena, G.G., & de la Torre, A.R. (2007). Resistencia sistémica adquirida en plantas: estado actual. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 13(2), 157-162.
Canonne, J., Froidure-Nicolas, S., & Rivas, S. (2011). Phospholipases in action during plant defense signaling. Plant Signaling & Behavior, 6(1), 13-18.
Cerbah, M., Mortreau, E., Brown, S., Siljak-Yakovlev, S., Bertrand, H., & Lambert, C. (2001). Genome size variation and species relationships in the genus Hydrangea. Theoretical and Applied Genetics, 103(1), 45-51.
Chowdhury, J., Henderson, M., Schweizer, P., Burton, R.A., Fincher, G.B., & Little, A. (2014). Differential accumulation of callose, arabinoxylan and cellulose in non-penetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei. New Phytologist, 204(3), 650-660.
Clay, N.K., Adio, A.M., Denoux, C., Jander, G., & Ausubel, F.M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323(5910), 95-101.
Codarin, S., Galopin, G., & Chasseriaux, G. (2006). Effect of air humidity on the growth and morphology of Hydrangea macrophylla L. Scientia Horticulturae, 108(3), 303-309.
Crang, R., Lyons-Sobaski, S., & Wise, R. (2018). Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants. Cham, Switzerlan: Springer.
Dean, R.A. (1997). Signal pathways and appressorium morphogenesis. Annual Review of Phytopathology, 35(1), 211-234.
Demarco, D. (2017). Histochemical analysis of plant secretory structures. In C. Pellicciari & M. Biggiogera (Eds.), Histochemistry of single molecules methods and protocols (pp. 313-330). New York, USA: Humana Press.
Dirr, M.A. (2004). Hydrangeas for American Gardens. Portland: Timber Press.
Dória, K.M.A.B.V., Nozaki, D.N., Pavan, M.A., Yuki, V.A., & Sakate, R.K. (2011). Identification and characterization of a Hydrangea ringspot virus isolate infecting hydrangea in São Paulo State. Summa Phytopathologica, 37(2), 125-128.
Dugyala, S., Borowicz, P., & Acevedo, M. (2015). Rapid protocol for visualization of rust fungi structures using fluorochrome Uvitex 2B. Plant Methods, 11(1), 54.
Engelsdorf, T., Will, C., Hofmann, J., Schmitt, C., Merritt, B.B., Rieger, L., Frenger, S.M., Marschal, A., Franke, B.R., Pattathil, S., & Voll, L.M. (2017). Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants. Journal of Experimental Botany, 68(3), 701-713.
Fontseré, A.C., & Pahí, L.R. (1984). El cultivo de la hortensia (II parte). Plagas y enfermedades. Horticultura: Revista de industria, distribución y socioeconomía hortícola: frutas, hortalizas, flores, plantas, árboles ornamentales y viveros, 17, 47-54.
Freire, F.C.O., & Mosca, J.L. (2009). Patógenos associados a doenças de plantas ornamentais no Estado do Ceará. Revista Brasileira de Horticultura Ornamental, 15(1), 83-89.
French, N., John, M.E., & Williams, J.J.W. (1971). Observations on the biology and control of stem Eelworm (Ditylenchus dipsaci (Kühn) Filipjev) on Hydrangea (Hydrangea macrophylla Ser.). Plant Pathology, 20(4), 177-183.
Gilman, E. (1999). Hydrangea macrophylla. Florida, USA: Institute of Food and Agricultural Sciences.
Hagan, A.K., Olive, J.W., Stephenson, J., & Rivas-Davila, M.E. (2004). Impact of application rate and interval on the control of powdery mildew and Cercospora leaf spot on bigleaf Hydrangea with azoxystrobin. Journal of Environmental Horticulture, 22(2), 58-62.
Halcomb, M., & Reed, S. (2010). Hydrangea production. USA: University of Tennessee.
Hempel, P., Hohe, A., & Tränkner, C. (2018). Molecular reconstruction of an old pedigree of diploid and triploid Hydrangea macrophylla genotypes. Frontiers in Plant Science, 9, 1-13.
Hufford, L. (2004). Hydrangeaceae. In K. Kubitzki (Ed.), Flowering Plants. Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales (Vol. 6, pp. 202-215). Heidelberg, Germany: Springer Science & Business Media.
Houston, K., Tucker, M.R., Chowdhury, J., Shirley, N., & Little, A. (2016). The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Frontiers in Plant Science, 7, 984, 1-18.
Instituto colombiano Agropecuario. (2018a). El ICA supervisa la calidad fitosanitaria de cerca 600 millones de tallos de flores enviados a los Estados Unidos para la fiesta de San Valentín. Recuperado de http://www.agronet.gov.co/Noticias/Paginas/httpswww-ica-gov-coNoticiasica-flores-colombianas-sanvalentin-aspx.aspx
Instituto colombiano Agropecuario. (2018b). El ICA apoya el florecimiento del sector ornamental de Antioquia. Recuperado de https://www.ica.gov.co/noticias/ica-apoya-exportacion-ornamental-antioquia
Kuhn, H., Kwaaitaal, M., Kusch, S., Acevedo, Garcia, J., Wu, H., & Panstruga, R. (2016). Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. The Arabidopsis Book/American Society of Plant Biologists, 14, 1-24.
Laureano, G., Figueiredo, J., Cavaco, A.R., Duarte, B., Caçador, I., Malhó, R., Silva, S.M., Matos, R.A., & Figueiredo, A. (2018). The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Scientific Reports, 8, 1-15.
Lattanzio, V., Lattanzio, M.T.V., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In F. Imperato (Ed.), Phytochemistry: advances in research (pp. 23-67). Trivandrum, India: Research Signpost.
Li, Y., Windham, M.T., Trigiano, R.N., Reed, S.M., Spiers, J.M., & Rinehart, T.A. (2009a). Bright-field and fluorescence microscopic study of development of Erysiphe polygoni in susceptible and resistant bigleaf Hydrangea. Plant Disease, 93(2), 130-134.
Li, Y., Windman, M., Trigiano, R., Reed, S., Rinehart, T. & Spiers, J. (2009b). Assessment of resistance components of bigleaf hydrangeas (Hydrangea macrophylla) to Erysiphe polygoni in vitro. Canadian Journal of Plant Pathology, 31(3), 348-355.
Li, Y., Mmbaga, M.T., Zhou, B., Joshua, J., Rotich, E., & Parikh, L. (2018). Diseases of Hydrangea. In R.J. McGovern & W.H. Elmer (Eds.), Handbook of florists' crops diseases (pp. 987-1006). Cham, Switzerland: Springer International Publishing.
Malinovsky, F.G., Fangel, J.U., & Willats, W.G. (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 178, 1-12.
Marqués, J.P.R., Amorim, L., Spósito, M.B., & Appezzato-da-Glória, B. (2016). Ultrastructural changes in the epidermis of petals of the sweet orange infected by Colletotrichum acutatum. Protoplasma, 253(5), 1233-1242.
Marqués, J.P., Kitajima, E.W., Freitas-Astúa, J., & Appezzato-da-Glória, B. (2010). Comparative morpho-anatomical studies of the lesions caused by Citrus leprosis virus on sweet orange. Anais da Academia Brasileira de Ciências, 82(2), 501-511.
MinCIT-Ministerio de Comercio, Industria y Turismos, Colombia. (2019). Cerca de 35 mil toneladas de flores colombianas fueron exportadas para cubrir la demanda de San Valentín 2019. Recuperado de www.mincit.gov.co/prensa/noticias/comercio/exportacion-flores-san-valentin-2019
Mmbaga, M.T., Kim, M.S., Mackasmiel, L., & Li, Y. (2012). Evaluation of Hydrangea macrophylla for resistance to leaf‐spot diseases. Journal of Phytopathology, 160(2), 88-97.
Montes-Belmont, R. (2009). Diversidad de compuestos químicos producidos por las plantas contra hongos fitopatógenos. Revista Mexicana de Micología, 29, 73-82.
Moreno, F.O.L., & Serna, C.F.J. (2006). Biology of Peridroma saucia (Lepidoptera: Noctuidae: Noctuinae) on flowers of the commercial hybrid of Alstroemeria spp. Revista Facultad Nacional de Agronomía, Medellín, 59(2), 3435-3448.
Mur, L.A., Kenton, P., Lloyd, A.J., Ougham, H., & Prats, E. (2007). The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany, 59(3), 501-520.
Ordeñana, K.M. (2002). Mecanismos de defensa en las interacciones planta-patógeno. Revista Manejo Integrado de Plagas. Costa Rica, 63, 22-32.
Park, M.J., Cho, S.E., Park, J.H., Lee, S.K., & Shin, H.D. (2012). First report of powdery mildew caused by Oidium hortensiae on mophead Hydrangea in Korea. Plant Disease, 96(7), 1072-1072.
Peterson, R.L., Peterson, C.A., & Melville, L.H. (2008). Teaching plant anatomy through creative laboratory exercises. Ottawa, Canada: NRC Research Press.
Quirós, M.L. (2012). La Floricultura en Colombia en el marco de la globalización: Aproximaciones hacia un análisis micro y macroeconómico. Revista Universidad EAFIT, 37(122), 59-68.
Qiu, P.L., Braun, U., Li, Y., & Liu, S.Y. (2019). Erysiphedeutziicola sp. nov. (Erysiphaceae, Ascomycota), a powdery mildew species found on Deutziaparviflora (Hydrangeaceae) with unusual appendages. MycoKeys, 51, 97-106.
Ramírez, L.N.M. (2014). Floricultura colombiana en contexto: experiencias y oportunidades en Asia pacífico. Revista Digital Mundo Asia Pacífico, 3(5), 52-79.
Ramming, D.W., Hinrichs, H.A., & Richardson, P.E. (1973). Sequential staining of callose by aniline blue and lacmoid for fluorescence and regular microscopy on a durable preparation of the same specimen. Stain Technology, 48(3), 133-134.
Reed, S.M., & Rinehart, T.A. (2007). Simple sequence repeat marker analysis of genetic relationships within Hydrangea macrophylla. Journal of the American Society for Horticultural Science, 132(3), 341-351.
Reina, P.J.J., & Yephremov, A. (2009). Surface lipids and plant defenses. Plant Physiology and Biochemistry, 47(6), 540-549.
Ruzin, S.E. (1999). Plant microtechnique and microscopy. New York, USA: Oxford University.
Ryder, L.S., & Talbot, N.J. (2015). Regulation of appressorium development in pathogenic fungi. Current Opinion in Plant Biology, 26, 8-13.
Sandoval, E. (2005). Técnicas aplicadas al estudio de la anatomía vegetal. México D.F: UNAM.
Sanzón, G.D., & Zavaleta, M.E. (2011). Respuesta de hipersensibilidad, una muerte celular programada para defenderse del ataque por fitopatógenos. Revista Mexicana de Fitopatología, 29(2), 154-164.
Schmelzer, E. (2002). Cell polarization, a crucial process in fungal defence. Trends in Plant Science, 7(9), 411-415.
Schmidt, A., & Scholler, M. (2011). Studies in Erysiphales anamorphs (4): species on Hydrangeaceae and Papaveraceae. Mycotaxon, 115(1), 287-301.
Seo, J.S., Lee, T.H., Lee, S.M., Lee, S.E., Seong, N.S., & Kim, J.Y. (2009). Inhibitory effects of methanolic extracts of medicinal plants on nitric oxide production in activated macrophage RAW 264.7 cells. Korean Journal of Medicinal Crop Science, 17(3), 173-178.
Simpson, M.G. (2010). Plant systematics. San Diego, USA: Academic press.
Sinclair, W.A., & Lyon, H.H. (2005) Diseases of trees and shrubs (Second Ed.). Ithaca, USA: Cornell University Press.
Sørensen, C.K., Justesen, A.F., & Hovmøller, M.S. (2012). 3-D imaging of temporal and spatial development of Puccinia striiformis haustoria in wheat. Mycologia, 104(6), 1381-1389.
Soukup, A. (2014). Selected simple methods of plant cell wall histochemistry and staining for light microscopy. En V. Žárský, & F. Cvrčková (Eds.), Plant cell morphogenesis: methods and protocols, methods in molecular biology (pp. 25-40). New York, USA: Humana Press.
Stern, W.L. (1978). Comparative anatomy and systematics of woody Saxifragaceae. Hydrangea. Botanical Journal of the Linnean Society, 76(2), 83-113.
Talbot, M.J., & White, R.G. (2013). Methanol fixation of plant tissue for scanning electron microscopy improves preservation of tissue morphology and dimensions. Plant Methods, 9(1), 36.
Tang, J., Harper, S.J., Wei, T., & Clover, G.R. (2010). Characterization of Hydrangea chlorotic mottle virus, a new member of the genus Carlavirus. Archives of Virology, 155(1), 7-12.
Ulryghová, M., Petrü, E., & Pazourková, Z. (1976). Permanent staining of callose in plant material by Ponceau S. Stain Technology, 51(5), 272-275.
Underwood, W. (2007). The plant cell wall: a dynamic barrier against pathogen invasion. Current Challenges in Plant Cell Walls, 3(85), 67.
Vogel, J.P., Raab, T.K., Somerville, C.R., & Somerville, S.C. (2004). Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. The Plant Journal, 40(6), 968-978.
Voigt, C.A. (2014). Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science, 5, 1-6.
Walley, J.W., Kliebenstein, D.J., Bostock, R.M., & Dehesh, K. (2013). Fatty acids and early detection of pathogens. Current Opinion in Plant Biology, 16(4), 520-526.
Windham, M.T., Reed, S.M., Mmbaga, M.T., Windham, A.S., Li, Y., & Rinehart, T.A. (2011). Evaluation of powdery mildew resistance in Hydrangea macrophylla. Journal of Environmental Horticulture, 29(2), 60-64.
Yashaswini, S., Hegde, R.V., & Venugopal, C.K. (2011). Health and nutrition from ornamentals. International Journal of Research in Ayurveda & Pharmacy, 2(2), 375-382.
Zabka, V., Stangl, M., Bringmann, G., Vogg, G., Riederer, M., & Hildebrandt, U. (2008). Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytologist, 177(1), 251-263.
Zhang, Q., & Xiao, S. (2015). Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate. Frontiers in Plant Science, 6, 387, 1-7.
Ziv, C., Zhao, Z., Gao, Y.G., & Xia, Y. (2018). Multifunctional roles of plant cuticle during plant-pathogen interactions. Frontiers in Plant Science, 9, 2-8.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2020 Edgar Javier Rincón Barón, Claudia Grisales, Claudia Grisales, Viviana Lucia Cuaran, Nadya Lorena Cardona