Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Citocentrifugación como un método adicional para estudiar celomitos de equinodermos: un enfoque comparativo que combina células vivas, preparaciones teñidas y espectroscopía de rayos-x de dispersión de energía
PDF (English)
HTML (English)

Palabras clave

comparative cell morphology; echinoderm physiology; energy-dispersive x-ray spectroscopy; invertebrate immunology; spherulocytes; vibratile cells.
morfología celular comparativa; fisiología de equinodermos; espectroscopía de rayos-x de energía dispersiva; inmunología de invertebrados; esferulocitos; células vibrátiles.

Cómo citar

Queiroz, V., Arizza, V., Vazzana, M., Rozas, E.-E., & Custódio, M.-R. (2021). Citocentrifugación como un método adicional para estudiar celomitos de equinodermos: un enfoque comparativo que combina células vivas, preparaciones teñidas y espectroscopía de rayos-x de dispersión de energía. Revista De Biología Tropical, 69(S1), S171–S184. https://doi.org/10.15517/rbt.v69iSuppl.1.46348

Resumen

Introducción: Los celomocitos de equinodermos se han investigado tradicionalmente a través de un enfoque morfológico utilizando microscopía óptica, que se basa en la idea de la forma celular constante como un carácter estable. Sin embargo, esto puede verse afectado por condiciones bióticas o abióticas. Objetivo: Analizar si la consistencia en la morfología celular que ofrece el método de citocentrifugación podría utilizarse como una herramienta conveniente para estudiar los celomocitos de equinodermos. Métodos: Células de Echinaster (Othilia) brasiliensis (Asteroidea), Holothuria (Holothuria) tubulosa (Holothuroidea), Eucidaris tribuloides, Arbacia lixula, Lytechinus variegatus y Echinometra lucunter (Echinoidea) se esparcieron en portaobjetos de microscopio por citocentrifugación, se tiñeron y analizaron mediante microscopía óptica. Adicionalmente, se aplicó microscopía de fluorescencia, microscopía electrónica de barrido y espectroscopía de rayos X con dispersión de energía a las preparaciones de citoespina, para complementar el análisis de los esferulocitos granulares e incoloros de Eucidaris tribuloides. Resultados: En total, se identificaron en las muestras analizadas 11 tipos de células, incluidos fagocitos, esferulocitos, células vibrátiles y células progenitoras. El esferulocito granular, un tipo de célula recién descrito, se observó en todos los Echinoidea y fue muy similar a los esferulocitos acidófilos de Holothuria (Holothuria) tubulosa. Conclusiones: La citocentrifugación demostró ser un método bastante versátil, ya sea como el método principal de investigación en preparaciones teñidas o como un marco en el que se pueden realizar otros procedimientos. Su capacidad para mantener una morfología constante permitió una correspondencia precisa entre las células vivas y las células fijas/teñidas, la diferenciación entre esferulocitos similares, así como comparaciones entre células similares de Holothuroidea y Echinoidea.

https://doi.org/10.15517/rbt.v69iSuppl.1.46348
PDF (English)
HTML (English)

Citas

Arendt, D. (2008). The evolution of cell types in animals: emerging principles from molecular studies. Nature Reviews Genetics, 9(11), 868-882.

Arizza, V., Giaramita, F.T., Parrinello, D., Cammarata, M., & Parrinello, N. (2007). Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(2), 389-394.

Behmer, O.A., Tolosa, E.M.C., & Freitas-Neto, A.G. (1976). Manual de técnicas de histologia normal e patológica. São Paulo, Brazil: Edart/Edusp.

Bertheussen, K., & Seljelid, R. (1978). Echinoid phagocytes in vitro. Experimental Cell Research, 111(2), 401-412.

Bibby, M. (1986). Preparation of Cytospin slides from bloody fluids. Laboratory Medicine, 17(4), 228.

Boolotian, R.A. (1962). The perivisceral elements of echinoderm body fluids. American Zoologist, 2, 275-284.

Branco, P.C., Borges, J.C.S., Santos, M.F., Junior, B.E.J., & da Silva, J.R.M.C. (2013). The impact of rising sea temperature on innate immune parameters in the tropical subtidal sea urchin Lytechinus variegatus and the intertidal sea urchin Echinometra lucunter. Marine Environmental Research, 92, 95-101.

Brockton, V., Henson, J.H., Raftos, D.A., Majeske, A.J., Kim, Y.O., & Smith, L.C. (2008). Localization and diversity of 185/333 proteins from the purple sea urchin-unexpected protein-size range and protein expression in a new coelomocyte type. Journal of Cell Science, 121(3), 339-348.

Canicattì, C., D’Ancona, G., & Farina-Lipari, E. (1989). The coelomocytes of Holothuria polii (Echinodermata). I. Light and electron microscopy. Bollettino di Zoologia, 56(1), 29-36.

Clow, L.A., Raftos, D.A., Gross, P.S., & Smith, L.C. (2004). The sea urchin complement homologue, SpC3, functions as an opsonin. Journal of Experimental Biology, 207(12), 2147-2155.

Coteur, G., DeBecker, G., Warnau, M., Jangoux, M., & Dubois, P. (2002). Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata). European Journal of Cell Biology, 81(7), 413-418.

Custódio, M.R., Hajdu, E., & Muricy, G. (2004). Cellular dynamics of in vitro allogeneic reactions of Hymeniacidon heliophila (Demospongiae: Halichondrida). Marine Biology, 144, 999-1010.

Dunham, P., & Weissmann, G. (1986). Aggregation of marine sponge cells induced by Ca pulses, Ca ionophores, and phorbol esters proceeds in the absence of external Ca. Biochemical and Bbiophysical Rresearch Ccommunications, 134(3), 1319-1326.

Edds, K.T. (1977). Dynamic aspects of filopodial formation by reorganization of microfilaments. The Journal of cell biology, 73(2), 479-491.

Edds, K.T. (1993). Cell biology of echinoid coelomocytes: I. Diversity and characterization of cell types. Journal of Invertebrate Pathology, 61(2), 173-178.

Falugi, C., Aluigi, M.G., Chiantore, M.C., Privitera, D., Ramoino, P., Gatti, M.A., Matranga, V. (2012). Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Marine Environmental Research, 76, 114-121.

Fleury-Feith, J., Escudier, E., Pocholle, M.J., Carre, C., & Bernaudin, J.F. (1987). The effects of cytocentrifugation on differential cell counts in samples obtained by bronchoalveolar lavage. Acta Cytologica, 31(5), 606-610.

García-Arrarás, J.E., Schenk, C., Rodrígues-Ramírez, R., Torres, I.I., Valentín, G., & Candelaria, A.G. (2006). Spherulocytes in the echinoderm Holothuria glaberrima and their involvement in intestinal regeneration. Developmental dynamics: an official publication of the American Association of Anatomists, 235(12), 3259-3267.

Giamberini, L., Auffret, M., & Pihan, J.C. (1996). Haemocytes of the freshwater mussel, Dreissena polymorpha Pallas: cytology, cytochemistry and x-ray microanalysis. Journal of Molluscan Studies, 62(3), 367-379.

Gill, G. (2013). Cytopreparation: principles & practice. New York: Springer Science & Business Media.

Golconda, P., Buckley, K.M., Reynolds, C.R., Romanello, J.P., & Smith, L.C. (2019). The axial organ and the pharynx are sites of hematopoiesis in the sea urchin. Frontiers in Immunology, 10, 870.

Grand, A., Pratchett, M., & Rivera-Posada, J. (2014). The immune response of Acanthaster planci to oxbile injections and antibiotic treatment. Journal of Marine Biology, 2014, 1-11.

Hetzel, H.R. (1963). Studies on holothurian coelomocytes. I. A survey of coelomocyte types. The Biological Bulletin, 125(2), 289-301.

Johnson, P.T. (1969). The coelomic elements of sea urchins (Strongylocentrotus). I. The normal coelomocytes; their morphology and dynamics in hanging drops. Journal of Invertebrate Pathology, 13(1), 25-41.

Kanungo, K. (1984). The coelomocytes of asteroid echinoderms. In T.C. Cheng (Ed.), Invertebrate Blood (pp. 7-39). Boston, MA: Springer.

Kozak, M. (1983). Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiological Reviews, 47(1), 1-45.

Magesky, A., de Oliveira-Ribeiro, C.A., Beaulieu, L., & Pelletier, É. (2017). Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. Environmental Toxicology and Chemistry, 36(7), 1872-1886.

Majeske, A.J., Bayne, C.J., & Smith, L.C. (2013a). Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide. PloS One, 8(4), e61419.

Majeske, A.J., Oleksyk, T.K., & Smith, L.C. (2013b). The Sp185/333 immune response genes and proteins are expressed in cells dispersed within all major organs of the adult purple sea urchin. Innate Immunity, 19(6), 569-587.

Matranga, V., Pinsino, A., Celi, M., Natoli, A., Bonaventura, R., Schröder, H.C., & Müller, W.E.G. (2005). Monitoring chemical and physical stress using sea urchin immune cells. In V. Matranga (Ed.), Echinodermata. Progress in molecular and subcellular biology (marine molecular biotechnology) (pp. 85-110). Berlin, Heidelberg: Springer.

Piryaei, F., Ghavam-Mostafavi, P., Shahbazzadeh, D., & Pooshang-Bagheri, K. (2018). Cytological study of Echinometra mathaei (Echinoidea: Camarodonta: Echinometra), the Persian Gulf sea urchin. International Journal of Aquatic Science, 9(2), 77-84.

Qing-fan, Z. (1986). A simplified cytocentrifuge and its clinical application. Journal of Tongji Medical University, 6(4), 256-261.

Queiroz, V. (2018). Opportunity makes the thief-observation of a sublethal predation event on an injured sea urchin. Marine Biodiversity, 48(1), 153-154.

Queiroz, V. (2020). An unprecedented association of an encrusting bryozoan on the test of a live sea urchin: epibiotic relationship and physiological responses. Marine Biodiversity, 50(5), 1-7.

Queiroz, V., & Custódio, M.R. (2015). Characterisation of the spherulocyte subpopulations in Eucidaris tribuloides (Cidaroida: Echinoidea). Italian Journal of Zoology, 82(3), 338-348.

Ramírez-Gómez, F., & García-Arrarás, J.E. (2010). Echinoderm immunity. Invertebrate Survival Journal, 7, 211-220.

Ramírez-Gómez, F., Aponte-Rivera, F., Méndez-Castaner, L., & García-Arrarás, J.E. (2010). Changes in holothurian coelomocyte populations following immune stimulation with different molecular patterns. Fish & Shellfish Immunology, 29(2), 175-185.

Rathert, P., Roth, S., & Soloway, M.S. (1993). Urinary cytology: manual and atlas. Berlin, Heidelberg: Springer-Verlag.

Romero, A., Novoa, B., & Figueras, A. (2016). Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation. Developmental & Comparative Immunology, 62, 29-38.

Sabnis, R.W. (2010). Handbook of biological dyes and stains: synthesis and industrial applications. Hoboken: John Wiley & Sons, Inc.

Scippa, S., Botte, L., Zierold, K., & De Vincentiis, M. (1985). X-ray microanalytical studies on cryofixed blood cells of the ascidian Phallusia mammillata. Cell and Tissue Research, 239(2), 459-461.

Scippa, S., De Vincentiis, M., & Zierold, K. (1990). X-ray microanalytical studies on cryofixed blood cells of the ascidian Phallusia mammillata. III. Quantitative analyses of non-vanadium-accumulating blood cells. Invertebrate Reproduction & Development, 17(2), 141-146.

Scippa, S., De Vincentiis, M., & Zierold, K. (1993). Quantitative X-ray microanalysis of the morula cell of the blood of the ascidian Halocynthia papillosa (Stolidobranchiata). Cell and Tissue Research, 271(1), 77-80.

Smith, L.C., Arizza, V., Hudgell, M.A.B., Barone, G., Bodnár, A.G., Buckley, K.M., … Sutton, E. (2018). Echinodermata: The complex immune system in echinoderms. In E. Cooper (Ed.), Advances in Comparative Immunology (pp. 409-501). Cham: Springer.

Smith, V.J. (1981). The echinoderms. In N.A. Ratcliffe, & A.F. Rowley (Eds.), Invertebrate blood cells (pp. 513-562). New York: Academic Press.

Taguchi, M., Tsutsui, S., & Nakamura, O. (2016). Differential count and time-course analysis of the cellular composition of coelomocyte aggregate of the Japanese sea cucumber Apostichopus japonicus. Fish & Shellfish Immunology, 58, 203-209.

Taniuchi, I. (2018). CD4 helper and CD8 cytotoxic T cell differentiation. Annual review of Immunology, 36, 579-601.

Tullius, T.D., Gillum, W.O., Carlson, R.M.K., & Hodgson, K.O. (1980). Structural study of the vanadium complex in living ascidian blood cells by x-ray absorption spectroscopy. Journal of the American Chemical Society, 102(17), 5670-5676.

Vazzana, M., Siragusa, T., Arizza, V., Buscaino, G., & Celi, M. (2015). Cellular responses and HSP70 expression during wound healing in Holothuria tubulosa (Gmelin, 1788). Fish & Shellfish Immunology, 42(2), 306-315.

Vazzana, M., Celi, M., Chiaramonte, M., Inguglia, L., Russo, D., Ferrantelli, V., Battaglia, D., & Arizza, V. (2018). Cytotoxic activity of Holothuria tubulosa (Echinodermata) coelomocytes. Fish & Shellfish Immunology, 72, 334-341.

Xing, K., Yang, H.S., & Chen, M.Y. (2008). Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicus. Aquatic Biology, 2, 85-92.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.