Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
El desarrollo embrionario y larvario está condicionado por la temperatura del agua y el origen materno de los huevos en el erizo de mar Arbacia dufresnii (Echinodermata: Echinoidea)
PDF (English)
HTML (English)

Palabras clave

Echinoderm; Echinoidea; parental provisioning; thermal effect; early life stages; larval growth.
Equinodermos; reproducción; aprovisionamiento parental; efecto térmico; estadios tempranos del desarrollo; crecimiento larval.

Cómo citar

Pía-Fernández, J., Belén-Chaar, F., Epherra, L., González-Aravena, J.-M., & Rubilar, T. (2021). El desarrollo embrionario y larvario está condicionado por la temperatura del agua y el origen materno de los huevos en el erizo de mar Arbacia dufresnii (Echinodermata: Echinoidea). Revista De Biología Tropical, 69(S1), S452–S463. https://doi.org/10.15517/rbt.v69iSuppl.1.46384

Resumen

Introducción: El desarrollo embrionario y larvario de los erizos de mar depende en gran medida del estado nutricional materno y de las condiciones ambientales del agua de mar. Objetivo: Comparar el desarrollo de Arbacia dufresnii en dos temperaturas de agua diferentes y en progenies con diferentes orígenes maternos. Métodos: indujimos a las hembras y machos de A. dufresnii del Golfo Nuevo a desovar, recolectamos los huevos de cada hembra individualmente (progenie), los separamos en dos temperaturas de agua de mar (12 y 17 ° C) y los fertilizamos. Registramos el porcentaje de óvulos fecundados y el porcentaje de embriones por etapa de desarrollo según tiempo, temperatura y descendencia. Medimos el crecimiento larvario según la longitud total (TL) y la longitud corporal de la línea media (M) de acuerdo con el tiempo en días post fecundación, la temperatura y la progenie. Resultados: La temperatura no afectó la fertilización, pero el desarrollo del embrión fue más rápido y más sincronizado en el tratamiento de alta temperatura. Los modelos lineales generalizados indican que el desarrollo del embrión depende una interacción cuádruple entre el estadio embrionario, el tiempo (h), la temperatura del agua de mar y la progenie. El crecimiento larvario fue más rápido, produciendo larvas más grandes a la temperatura más alta. El crecimiento de las larvas depende de una triple interacción entre el tiempo (DPF), la temperatura del agua de mar y la progenie. Conclusiones: Encontramos un impacto en la temperatura y en la progenie durante el desarrollo embrionario y larvario y, en ambos casos, estos factores generaron un efecto sinérgico sobre el tiempo de desarrollo y el tamaño de las larvas. Esto probablemente proporciona una ventaja de supervivencia, ya que una velocidad de desarrollo más rápida implica una disminución en el tiempo que pasan en la columna de agua, donde los erizos de mar son vulnerables a los factores estresantes bióticos y abióticos.

https://doi.org/10.15517/rbt.v69iSuppl.1.46384
PDF (English)
HTML (English)

Citas

Bernasconi, I. (1942). Primeros estados larvales de Arbacia dufresnii (Blv). Physis: Revista de la Sociedad Argentina de Ciencias Naturales, 19(53), 305-317.

Bernasconi, I. (1947). Distribución geográfica de los equinoideos argentinos. Anales de la Sociedad Argentina de Estudios Geográficos, 6, 97-114.

Bernasconi, I. (1966). Los Equinodermos recolectados por el Walther Herwig en el Atlántico Sudoeste. Hidrobiológica, 3, 289-334.

Brogger, M. I. (2005). Biología reproductiva del erizo verde Arbacia dufresnii (Blainville, 1825) en las costas del Golfo Nuevo, Patagonia (Bachelor thesis). Universidad de Buenos Aires, Argentina.

Brogger, M., Gil, D. G., Rubilar, T., Martínez, M., Díaz de Vivar, M. E., Escolar, M., ... Tablado, A. (2013). Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In J. J. Alvarado & F. A. Solís-Marín (Eds.), Echinoderm Research and Diversity in Latin America (pp. 359-402). Berlín: Springer Heidelberg.

Byrne, M. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: an Annual Review, 49, 1-42.

Byrne, M. (2012). Global change ecotoxicology: identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Marine Environmental Research, 76, 3-15.

Byrne, M., Sewell, M. A. & Prowse, T. A. A. (2008a). Nutritional ecology of sea urchin larvae: Influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Functional Ecology, 22(4), 643-648.

Byrne, M., Prowse, T.A.A., Sewell, M.A., Dworjanyn, S., Williamson, J.E. & Vaïtilingon, D. (2008b). Maternal provisioning for larvae and larval provisioning for juveniles in the toxopneustid sea urchin Tripneustes gratilla. Marine Biology, 155(5), 473-482.

Byrne, M., Ho, M., Selvakumaraswamy, P., Nguyen, H.D., Dworjanyn, S.A. & Davis, A.R. (2009). Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal B: Society Biological Sciences, 276(1663), 1883-1888.

Catarino, A., De Ridder, I., Gonzalez, C., Gallardo, M.P. & Dubois, P. (2012). Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Polar Biology, 35(3), 455-461.

De Vido de Mattio, N. (1980). lnfluencia de la temperatura y de la producción primaria en la variación estacional de la composición química y peso de Aulacomya Ater Ater en Golfo Nuevo·Chubut. Argentina: Centro Nacional Patagónico-CONICET.

InfoStat Release 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Retrived from http://www. infoestar. com. ar.

Epherra, L. (2016). Evaluación del impacto de invertebrados herbívoros nativos sobre el alga invasora Undaria pinnatifida: Arbacia dufresnii (Echinodermata: Echinoidea) como modelo de estudio (Doctoral dissertation). Universidad Nacional de Mar del Plata, Argentina.

Epherra, L., Gil, D., Rubilar, T., Perez-Gallo, A.S., Reartes, B. & Tolosano, J.A. (2015). Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Marine and Freshwater Research, 66(4), 329-342.

Ericson, J. A., Ho, M. A., Miskelly, A., King, C. K., Virtue, P., Tilbrook, B. & Byrne, M. (2012). Combined effects of two ocean change stressors, warming and acidification on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biology, 35(7), 1027-1034.

Esteves, J.L., de Vido de Mattio, N., Cejas, J.J. & Frontali, J. (1981). Evolución de parámetros químicos y biológicos en el área de Bahía Nueva (Golfo Nuevo). Argentina: Centro Nacional Patagónico-CONICET.

Esteves, J.L., Santinelli, N., Sastre, V., Díaz, R. & Rivas, O. (1992). A toxic dinoflagellate bloom and PSP production associated with upwelling in Golfo Nuevo, Patagonia, Argentina. Hydrobiologia, 242(2), 115-122.

Ettensohn, C. A. (2017). Sea urchins as a model system for studying embryonic development. In M. J. Caplan. (Ed.), Reference Module in Biomedical Sciences (pp. 1-7). Ámsterdam: Elsevier.

Fernández, J. P., Epherra, L., Sepúlveda, L. & Rubilar, T. (2019). Desarrollo embrionario y larval del erizo de mar verde Arbacia dufresnii (Echinodermata: Echinoidea). Naturalia Patagónica. 15, 44–58.

Fujisawa, H. (1995). Variation in embryonic temperature sensitivity among groups of the sea urchin, Hemicentrotus pulcherrimus, which differ in their habitats. Zoological Science, 12(5), 583-589.

García, E., Clemente, S. & Hernández, J.C. (2015). Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. Marine Environmental Research, 110, 61-68.

George, S.B., Cellario, C. & Fenaux, L. (1990). Population differences in egg quality of Arbacia lixula (Echinodermata: Echinoidea): proximate composition of eggs and larval development. Journal of Experimental Marine Biology and Ecology, 141, 107-118.

Gianguzza, P. (2020). Arbacia. In J. M Lawrence (Ed.). Sea Urchins: Biology and Ecology. (43, pp. 419-429). Ámsterdam: Elsevier.

Gianguzza, P., Agnetta, D., Bonaviri, C., Di Trapani, F., Visconti, G., Gianguzza, F. & Riggio, S. (2011). The rise of thermophilic sea urchins and the expansion of barren grounds in the Mediterranean Sea. Chemistry and Ecology, 27 (2), 129-134.

Gianguzza, P., Visconti, G., Gianguzza, F., Vizzini, S., Sarà, G. & Dupont, S. (2014). Temperature modulates the response of the thermophile sea urchin Arbacia lixula early life stages to CO2-driven acidification. Marine Environment. Research, 93, 70-77.

Gibson, R., Atkinson, R., Gordon, J., Smith, I. & Hughes, D. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography Marine Biology Annual Review, 49, 1-42.

Gilbert, S. F. (2005). Biología del desarrollo. Buenos Aires: Editorial Médica Panamericana.

Hardy, N.A., Lamare, M., Uthicke, S., Wolfe, K., Doo, S. & Dworjanyn, S. (2014). Thermal tolerance of early development in tropical and temperate sea urchins: inferences for the tropicalization of eastern Australia. Marine Biology, 161(2), 395-409.

Irvine, S.Q. (2020). Embryonic canalization and its limits-A view from temperature. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 334(2), 128-144.

Karelitz, S., Lamare, M., Patel, F., Gemmell, N. & Uthicke, S. (2020). Parental acclimation to future ocean conditions increases development rates but decreases survival in sea urchin larvae. Marine Biology, 167(1), 1-16.

Lemire, M. & Himmelman, J.H. (1996). Relation of food preference to fitness for the green sea urchin, Strongylocentrotus droebachiensis. Marine Biology, 127(1), 73-78.

Lessios, H.A., Lockhart, S., Collin, R., Sotil, G., Sanchez-Jerez, P., Zigler, K.S. & Vacquier, V.D. (2012). Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Molecular Ecology, 21(1), 130-144.

McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3), 285-292.

Metaxas, A. (2013). Larval ecology of echinoids. In J.M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (pp. 69-81). San Diego, USA: Elsevier Academic Press.

Newcombe, E.M., Cárdenas, C.A. & Geange, S. (2012). Green sea urchins structure invertebrate and macroalgal communities in the Magellan Strait, southern Chile. Aquatic Biology, 15, 135-144.

O’Connor, C. & Mulley, J.C. (1977). Temperature effects on periodicity and embryology, with observations on the population genetics, of the aquacultural echinoid Heliocidaris tuberculata. Aquaculture, 12(2), 99-114.

O’Connor, M.I., Bruno, J.F., Gaines, S.D., Halpern, B.S., Lester, S.E., Kinlan, B.P. & Weiss, J.M. (2007). Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences, 104(4), 1266-1271.

Parra, M., Rubilar, T., Latorre, M., Epherra, L., Gil, D. & Díaz de Vivar, M. (2015). Nutrient allocation in the gonads of the sea urchin Arbacia dufresnii in different stages of gonadal development. Invertebrate Reproduction & Development, 59(1), 26-36.

Pastor, C. T. & Bala, L. O. (1995). Estudios de base en la bahía de Puerto Madryn (Golfo Nuevo, Chubut): parámetros químicos. Naturalia Patagónica, 3, 41-56.

Penchaszadeh, P. & Lawrence, J. (1999). Arbacia dufresnii (Echinodermata: Echinoidea): a carnivore in Argentinian waters. In M.D. Candia Carnevali & F. Bonasoro (Eds.), Echinoderm Research (pp. 525-530). Rotterdam, The Netherlands: A.A. Balkema.

Pérez-Portela, R., Wangensteen, O. S., Garcia-Cisneros, A., Valero-Jiménez, C., Palacín, C. & Turon, X. (2019). Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilus sea urchin in expansion in the Mediterranean. Heredity, 122(2), 244-259.

Pörtner, H. O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry Physiology Part A. Molecular & Integrative Physiology, 132(4), 739-761.

Privitera, D., Noli, M., Falugi, C. & Chiantore, M. (2011). Benthic assemblages and temperature effects on Paracentrotus lividus and Arbacia lixula larvae and settlement. Journal of Experimental Marine Biology and Ecology, 407(1), 6-11.

Przeslawski, R., Byrne, M. & Mellin, C. (2015). A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Global Change Biology, 21(6), 2122-2140.

Rahman, M.S., Rahman, S.M., & Uehara, T. (2007). Effects of temperature on early development of the sea urchin Echinometra mathaei from the intertidal reef of Okinawa Island, Japan. Journal of the Japanese Coral Reef Society, 9(1), 35-48.

Rahman, S., Tsuchiya, M. & Uehara, T. (2009). Effects of temperature on hatching rate, embryonic development and early larval survival of the edible sea urchin, Tripneustes gratilla. Biologia, 64(4), 768-775.

Rivas, A.L., Pisoni, J.P. & Dellatorre, F.G. (2016). Thermal response to the surface heat flux in a macrotidal coastal region (Nuevo Gulf, Argentina). Estuarine, Coastal and Shelf Science, 176, 117-123.

RStudio Team (3.5.1) [Software]. (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL. Retrieved from http://www.rstudio.com/.

Rubilar, T., Epherra, L., Deias-Spreng, J., De Vivar, M.E., Avaro, M., Lawrence, A.L. & Lawrence, J.M. (2016). Ingestion, Absorption and Assimilation Efficiencies, and Production in the Sea Urchin Arbacia dufresnii Fed a Formulated Feed. Journal Shellfish Research, 35(4), 1083-1093.

Sewell, M.A. & Young, C.M. (1999). Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. Journal of Experimental Marine Biology and Ecology, 236, 291-305.

Thompson, R.J. (1983). The Relationship between Food Ration and Reproductive Effort in the Green Sea Urchin, Strongylocentrotus droebachiensis. Oecologia, 56(1), 50-57.

Uthicke, S., Schaffelke, B. & Byrne, M. (2009). A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecological Monographs, 79(1), 3-24.

Visconti, G., Gianguzza, F., Butera, E., Costa, V., Vizzini, S., Byrne, M. & Gianguzza, P. (2017). Morphological response of the larvae of Arbacia lixula to near-future ocean warming and acidification. ICES Journal of Marine Science, 74(4), 1180-1190.

Walker, C.W. & Lesser, M.P. (1998). Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis: implications for aquaculture. Marine Biology, 132(4), 663-676.

Walker, C. W., Lesser, M. P. & Unuma, T. (2013). Sea urchin gametogenesis–structural, functional and molecular/genomic biology. In J. M Lawrance (Ed.), Developments in Aquaculture and Fisheries Science (pp. 25-43). Ámsterdam: Elsevier.

Wangensteen, O. S., Turon, X., Casso, M. & Palacín, C. (2013). El ciclo reproductivo del erizo de mar Arbacia lixula en el noroeste del Mediterráneo: influencia potencial de la temperatura y el fotoperíodo. Biología Marina, 160(12), 3157-3168.

Wong, J. M., Kozal, L. C., Leach, T. S., Hoshijima, U. & Hofmann, G., E. (2019) Transgenerational effects in an ecological context: Conditioning of adult sea urchins to upwelling conditions alters maternal provisioning and progeny phenotype. Journal of Experimental Marine Biology and Ecology, 517, 65–77.

Zar, J.H. (1984). Biostatistical Analysis-Prentice-Hall Inc. New Jersey, USA: Englewood Cliffs.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.