Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Fotoperiodo en la acuicultura del erizo de mar Arbacia dufresnii (Echinodermata: Echinoidea): El efecto en la producción y madurez de gametas
PDF (English)
HTML (English)

Palabras clave

gonad productivity; echinoderm; echinoid; aquaculture; mature gametes.
productividad gonadal; equinodermo; equinoideo; acuacultura; gametas maduras.

Cómo citar

Sepúlveda, L.-R., Pía-Fernandez, J., Vera-Piombo, M., Belén-Chaar, F., & Rubilar, T. (2021). Fotoperiodo en la acuicultura del erizo de mar Arbacia dufresnii (Echinodermata: Echinoidea): El efecto en la producción y madurez de gametas. Revista De Biología Tropical, 69(S1), S464–S473. https://doi.org/10.15517/rbt.v69iSuppl.1.46386

Resumen

Introducción: El fotoperiodo es, junto con la temperatura y la disponibilidad de alimentos, uno de los principales estímulos para el desarrollo de la gametogénesis en una amplia variedad de especies. Objetivo: Evaluar el efecto del fotoperiodo en la producción de gametas maduras de Arbacia dufresnii en un sistema de recirculación cerrado para determinar el mejor fotoperiodo para una acuicultura novedosa, enfocada en la producción de gametas con alta concentración de pigmentos para usos biotecnológicos. Métodos: Se realizó un experimento con tres regímenes/tratamientos diferentes de luz y oscuridad: luz constante (luz durante 24 h), fotoperiodo neutro (12 h de luz, 12 h de oscuridad) y oscuridad constante (oscuridad durante 24 h). Se utilizaron veinte hembras en cada tratamiento. Se indujo a todas las hembras a desovar al comienzo del experimento. Después de 30 días, diez hembras seleccionadas al azar de cada tratamiento fueron inducidas a desovar nuevamente. Al final del experimento, después de 60 días, se indujo el desove a las hembras restantes en cada tratamiento. Las gametas se recolectaron en agua de mar filtrada, se fijaron en solución de Davidson, se cuantificaron y midieron por triplicado en una cámara Sedgewick-Rafter. Para determinar la maduración, se evaluó el éxito de la fecundación después de 30 minutos de fertilización, calculando el porcentaje de huevos fertilizados. Resultados: Nuestros resultados muestran que, en el sistema acuícola, en solo dos meses se obtuvieron gametas maduras y casi 10 veces más la cantidad producida por los erizos de mar en su ambiente natural usando el fotoperiodo neutro (12 h luz:12 h oscuridad). También encontramos que la mayor exposición a la luz produce la menor cantidad de gametas maduras. Conclusión: Este estudio sugiere la viabilidad de la producción de gametos maduros en un corto período de tiempo en Arbacia dufresnii.

https://doi.org/10.15517/rbt.v69iSuppl.1.46386
PDF (English)
HTML (English)

Citas

Anderson, M.J., Gorley, R.N., & Clarke, K.R. (2008). PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, United Kingdom: Primer_E Ltd.

Bay-Schmith, E., & Pearse, J.S. (1987). Effect of fixed daylengths on the photoperiodic regulation of gametogenesis in the sea urchin Strongylocentrotus purpuratus. International Journal of Invertebrate Reproduction and Development, 11(3), 287-294.

Brogger, M.I., Martinez, M.I., & Penchaszadeh, P.E. (2010). Reproduction of the sea urchin Arbacia dufresnii (Echinoidea: Arbaciidae) from Golfo Nuevo, Argentina. Journal of the Marine Biological Association of the United Kingdom, 90(7), 1405-1409.

Brogger, M., Gil, D.G., Rubilar, T., Martinez, M., Díaz de Vivar, M.E., Escolar, M., Epherra, L., Pérez, A., & Tablado, A. (2013). Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In J.J. Alvarado & F. Solís-Marín (Eds.), Echinoderm Research and Diversity in Latin America (pp. 359-402). Berlín, Heidelberg: Springer-Verlag.

Bromage, N., Porter, M., & Randall, C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 197, 63-98.

Byrne, M. (1990). Annual reproductive cycle of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Marine Biology, 104, 275-289.

Cárcamo, P. (2004). Massive production of larvae and seeds of the sea urchin Loxechinus albus. In J.M. Lawrence & O. Guzmán (Eds.), Sea urchins: Fisheries and Ecology (pp. 299-306). Lancaster: DEStech Publications Inc.

Devauchelle, N., & Mingant, C. (1991). Review of the reproductive physiology of the scallop, Pecten maximus, applicable to intensive aquaculture. Aquatic Living Resources, 4(1), 41-51.

Díaz-Martínez J.P., Carpizo-Ituarte, E.J., & Benítez-Villalobos, F. (2019). Reproductive patterns of the black starry sea urchin Arbacia stellata in Punta Banda, Baja California, Mexico. Journal of the Marine Biological Association of the United Kingdom, 99(6), 1379-1391.

Epherra, L., Gil, D.G., Rubilar, T., Perez-Gallo, S., Reartes, M.B., & Tolosano, J.A. (2014). Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Marine and Freshwater Research, 66, 329-342.

Fernández, J.P., Epherra, L., Sepúlveda, L., & Rubilar, T. (2019). Desarrollo embrionario y larval del erizo de mar verde Arbacia dufresnii. Naturalia Patagónica, 14, 44-58.

Fuji, A. (1967). Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Memoirs of the Faculty of Fisheries Hokkaido University, 15(2), 83-160.

Gianguzza, P., & Bonaviri, C. (2013). Arbacia. In J.M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 275-283). Amsterdam: Elsevier.

Harris, L.G., & Eddy, S.D. (2015). Sea urchin ecology and biology. Echinoderm Aquaculture, 1-24.

James, P., Siikavuopio, S.I., & Mortensen, A. (2015). Sea urchin aquaculture in Norway. Echinoderm Aquaculture, 147-173.

Kelly, M.S. (2001) Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. Journal of Experimental Marine Biology and Ecology, 266(1), 67-80.

Kelly, M., Carboni, S., Cook, E., & Hughes, A. (2015). Sea urchin aquaculture in Scotland. Echinoderm Aquaculture, 211-224.

Kirchhoff, N., Eddy, S., & Brown, N. (2010) Out-of-season gamete production in Strongylocentrotus droebachiensis: Photoperiod and temperature manipulation. Aquaculture, 303(1-4), 77-85.

Costa-Leal, M., Rocha, R.J.M., Rosa, R., & Calado, R. (2016). Aquaculture of marine non-food organisms: What, why and how?. Reviews in Aquaculture, 10(2), 400-423.

Liu, H., & Chang, Y.Q. (2015). Sea urchin aquaculture in China. Echinoderm Aquaculture, 127-146.

Marzinelli, E.M., Bigatti, G., Giménez, J., & Penchaszadeh, P.E. (2006). Reproduction of the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) from Golfo Nuevo, Argentina. Bulletin of Marine Science, 79(1), 127-136.

McCarron, E., Burnell, G., & Mouzakitis, G. (2010). An experimental assessment on the effects of photoperiod treatments on the somatic and gonadal growth of the juvenile European purple sea urchin Paracentrotus lividus. Aquaculture Research, 41, 1072-1081.

McClintock, J.B., & Watts, S.A. (1990). The effects of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides (Lamarck) (Echinodermata: Echinoidea). Journal of Experimental Marine Biology and Ecology, 139(3), 175-184.

Meidel, S.K., & Scheibling, R.E. (1998) Annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis, in differing habitats in Nova Scotia, Canada. Marine Biology, 131, 461-478.

Mercier, A., & Hamel, J.F. (2009). Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Advances in Marine Biology, 55, 1-302.

Musgrove, R.J.B. (2005). Aquaculture and Diet Development Subprogram: Postharvest Enhancement of Sea Urchin Roe for the Japanese Market. Australia: FRDC Project 99/319, SARDI Aquatic Sciences Publication No. RD03/0102.

Pearce, C.M., Daggett, T.L., & Robinson, S.M.C. (2002). Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. Journal of the World Aquaculture Society, 33(3), 268-277.

Pearce, C.M., Daggett, T.L., & Robinson, S.M. (2004). Effect of urchin size and diet on gonad yield and quality in the green sea urchin. Aquaculture, 223(1-4), 337-367.

Pearse, J.S., & Eernisse, D.J. (1982). Photoperiodic regulation of gametogenesis and gonadal growth in the sea star Pisaster ochraceus. Marine Biology, 67, 121-125.

Pearse, J.S., & Walker, C.W. (1986). Photoperiodic regulation of gametogenesis in a North Atlantic sea star, Asterias vulgaris. International Journal of Invertebrate Reproduction and Development, 9, 71-77.

Pérez, A.F., Boy, C., Morriconi, E., & Calvo, J. (2010). Reproductive cycle and reproductive output of the sea urchin Loxechinus albus (Echinodermata: Echinoidea) from Beagle Channel, Tierra del Fuego, Argentina. Polar Biology, 33(3), 271-280.

Rubilar, T., Epherra, L., Deias-Spreng, J., Díaz De Vivar, M.E., Avaro, M., Lawrence, A.L., & Lawrence, J.M. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4), 1083-1093.

Spirlet, C., Grosjean, P., & Jangoux, M. (2000). Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture, 185(1-2), 85-99.

Strathmann, R. (1987). Echinoderm larval ecology viewed from the egg. Echinoderm Studies, 2, 55-136.

Unuma, T., Konishi, K., Furuita, H., Yamamoto, T., & Akiyama, T. (1996). Seasonal changes in gonad of cultured and wild red sea urchin Pseudocentrotus depressus. Suisanzoshoku, 44(2), 169-175.

Unuma, T. (2002). Gonadal growth and its relationship to aquaculture in sea urchins. In Y. Yokota, V. Matranga, & Z. Smolenicka (Eds.), The Sea Urchin: From Basic Biology to Aquaculture (pp. 115-127). Rotterdam: A.A. Balkema Publishers.

Unuma, T. & Walker, C.W. (2010). The role of the major yolk protein in sea urchin reproduction and its relevance to aquaculture. In L. Harris, S.A. Böttger, C.W. Walker, & M.P. Lesser (Eds.), Echinoderms: Durham (pp. 437-444). London: Taylor and Francis Group.

Unuma, T., Sakai, Y., Agatsuma, Y., & Kayaba, T. (2015). Sea urchin aquaculture in Japan. Echinoderm Aquaculture, 77-126.

Vaïtilingon, D., & Williamson, J.E. (2008). WIPO Patent No. WO/2008/074084. Geneva, Switzerland: World Intellectual Property Organization.

Wangensteen, O.S., Turon, X., Casso, M., & Palacín, C. (2013). The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Marine Biology, 160(12), 3157-3168.

Walker, C.W., & Lesser, M.P. (1998). Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis: implications for aquaculture. Marine Biology, 132, 663-676.

Walker, C.W., Lesser, M.P., & Unuma, T. (2013). Sea urchin gametogenesis-structural, functional and molecular/genomic biology. In: C.A. Lawrence (Ed.), Sea urchins: Biology and ecology (Vol. 3, pp. 25-44). San Diego: Elsevier Academic Press.

Walker, C.W., Böttger, S.A., Unuma, T., Watts, S.A., Harris, L.G., Lawrence, A.L., & Eddy, S.D. (2015). Enhancing the commercial quality of edible sea urchin gonads-technologies emphasizing nutritive phagocytes. Echinoderm Aquaculture, 263-286.

Watts, S.A., Lawrence, A.L., & Lawrence, J.M. (2013). Nutrition. In: J.M. Lawrence (Ed.), Sea urchins: Biology and ecology (Vol. 3, pp. 155-169). San Diego: Elsevier Academic Press.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.