Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Diversidad y estructura arbórea en afloramientos de carbonato de calcio en Calakmul, México
PDF
HTML

Archivos suplementarios

PDF DIGITAL APPENDIX

Palabras clave

rarefaction and extrapolation curves
karst
species composition
species richness
similarity
curvas de rarefacción y extrapolación
suelos kársticos
composición de especies
riqueza de especies
similitud

Cómo citar

Esparza-Olguín, L., & Martínez-Romero, E. (2021). Diversidad y estructura arbórea en afloramientos de carbonato de calcio en Calakmul, México. Revista De Biología Tropical, 69(3), 829–842. https://doi.org/10.15517/rbt.v69i3.46501

Resumen

Introducción: La vegetación arbórea de selvas que se desarrolla en ambientes kársticos dominados por carbonato de calcio enfrenta la restricción de agua y nutrientes, lo que condiciona su desarrollo. Objetivo: Analizar la composición, diversidad y estructura de la vegetación arbórea que se desarrolla en afloramientos de calcio (yesales) y sus condiciones edáficas comparándolas con las presentes en vegetación secundaria (VS). Métodos: Se emplearon 17 parcelas de 1 000 m², 14 en yesales y 3 en VS. Se obtuvo una muestra compuesta de suelo por parcela y estimamos pH, conductividad eléctrica (CE-salinidad), % de carbonatos de calcio (CaCO3), materia orgánica (MO), fósforo (P) y nitrógeno (N). La diferencia en la composición de especies se evaluó mediante un análisis de similitud (ANOSIM). Empleamos métodos de rarefacción y extrapolación, estimando la diversidad mediante los números de Hill (q = 0, q = 1 y q = 2). Se utilizó un análisis de regresión linear para evaluar la influencia de las características edáficas en la diversidad, el diámetro y la altura promedios. Resultados: Los suelos en yesales presentaron concentraciones bajas de MO, P y N, valores altos de CE-salinidad y altos porcentajes de CaCO3. Se registraron 6 443 individuos de 54 especies en yesales y 594 individuos de 62 especies en la VS, siendo la composición significativamente diferente. La diversidad, los valores promedio de altura y diámetro fueron menores en yesales respecto de VS, estas diferencias estuvieron relacionadas con las condiciones edáficas. Conclusiones: La vegetación arbórea en yesales tiene una composición semejante a la de selvas subperennifolias de Calakmul. Las tallas pequeñas de los árboles están relacionadas con el alto porcentaje de CaCO3 y los altos valores de CE que condicionan la disponibilidad de MO, N y P. Este estudio apoya la idea de que precarias condiciones edáficas tienen una influencia negativa en la diversidad y la estructura horizontal y vertical de la vegetación arbórea.

https://doi.org/10.15517/rbt.v69i3.46501
PDF
HTML

Citas

Aguilar-Duarte, Y., Maya-Martínez, A., Esparza-Olguín, L., Hernández-García, G., Canales-Cruz, R. & Chiquini-Heredia, W. (2019). Actualización cartográfica forestal en una zona kárstica del sureste mexicano. En O. Fraustro Martínez (Ed.), Conocimientos y saberes sobre el karst de México (pp. 95–115). Acts With Science.

Aryal, D., de Jong, B., Ochoa-Gaona, S., Mendoza-Vega, J., & Esparza-Olguín, L. (2015). Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forest of SE Mexico. Nutrient Cycling in Agroecosystems, 103(1), 45–60. https://doi.org/10.1007/s10705-015-9719-0

Báez-Vargas, A. M., Esparza-Olguín, L., Martínez-Romero, E., Ochoa-Gaona, S., Ramírez-Marcial, N., & González-Valdivia, N. A. (2017). Efecto del manejo sobre la diversidad de árboles en vegetación secundaria en la Reserva de la Biosfera de Calakmul, Campeche, México. Revista de Biología Tropical, 65(1), 41–53. https://doi.org/10.15517/rbt.v65i1.20806

Balvanera, P. (2012). Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas, 21(1-2), 136–147.

Barlow, J., Franꞔa, F., Gadner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C., Wilson, S., Young, P. J., & Graham, N. A. J. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559, 517–526. https://doi.org/10.1038/s41586-018-0301-1

Bautista, F., & Palacio-Aponte, G. (2011). Parte III. Regionalización edáfica del territorio de México. Capítulo 24. Península de Yucatán. En P. Krasilnikov, F. J. Jiménez, T. Reyna, & N. E. García (Eds.), Geografía de suelos de México (pp. 355–406). Universidad Nacional Autónoma de México.

Bautista, F., Palacio-Aponte, G., Quintana, P., & Zinck, J. A. (2011). Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology, 135(3-4), 308–321. https://doi.org/10.1016/j.geomorph.2011.02.014

Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27, 326–349. https://doi.org/10.2307/1942268

Carnevali, G., Tapia-Muñoz, J. L., Duno de Stefano, R., & Ramírez, I. M. (2010). Flora ilustrada de la Península de Yucatán: Listado Florístico. Centro de Investigación Científica de Yucatán.

Clark, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Chang, J., Zhu, J., Xu, L., Su, H., Gao, Y., Cai, X., Peng, T., Wen, X., Zhang, J., & He, N. (2018). Rational land-use types in the karst regions of China: Insights from soil organic matter composition and stability. Catena, 160, 345–353. https://doi.org/10.1016/j.catena.2017.09.029

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1

Chiquini-Heredia, W., Esparza-Olguín, L., Peña-Ramírez, Y., Maya-Martínez, A., & Martínez-Romero, E. (2017). Estructura y diversidad en selva inundable al centro y sur de Calakmul. Ecosistemas y Recursos Agropecuarios, 4(12), 511–524. https://doi.org/10.19136/era.a4n12.859

Díaz-Gallegos, J. R., Castillo-Acosta, O., & García-Gil, G. (2002). Distribución espacial y estructura arbórea de la selva baja subperennifolia en un ejido de la Reserva de la Biosfera de Calakmul, Campeche, México. Universidad y Ciencia, 18(35), 11–28.

Du, Y., Pan, G., Li, L., Hu, Z., & Wang, X. (2011). Leaf N/P ratio and nutrient reuse between dominant species and stands: predicting phosphorus deficiencies in Karst ecosystems, southwestern China. Environmental Earth Sciences, 64, 299–309. https://doi.org/10.1007/s12665-010-0847-1

Ellis, E. A., Hernández-Gómez, I. U., & Romero-Montero, J. A. (2017) Los procesos y causas del cambio en la cobertura forestal de la Península de Yucatán, México. Ecosistemas, 26(1), 101–111. https://doi.org/10.7818/ECOS.2017.26-1.16

Esparza-Olguín, L., & Martínez-Romero, E. (2018). Diversidad y carbono almacenado en el área forestal permanente de Álvaro Obregón, Calakmul, Campeche. Revista Mexicana de Ciencias Forestales, 9(45), 152–186. https://doi.org/10.29298/rmcf.v9i45.141

Esparza-Olguín, L., Vargas-Contreras, J. A., Martínez-Romero, E., & Escalona-Segura, G. (2019). Diversidad y biomasa de la selva circundante al Volcán de los Murciélagos, en Campeche, México. Ecosistemas y Recursos Agropecuarios, 6(16), 79–90. https://doi.org/10.19136/era.a6n16.1986

Estrada-Medina, H., Jiménez-Osorio, J. J., Álvarez-Rivera, O., & Barrientos-Medina, R. C. (2019). El karst de Yucatán: origen, morfología y biología. Acta Universitaria Multidisciplinary Scientific Journal, 29, 1–18.

Fenton, O., Mellander, P. E., Daly, K., Wall, D. P., Jahangir, M. M. R., Jordan, P., & Richards, K. G. (2017). Integrated assessment of agricultural nutrient pressures and legacies in karst landscape. Agriculture, Ecosystems and Environment, 239, 246–256. https://doi.org/10.1016/j.agee.2017.01.014

García, J., Mizrahi, A., & Bautista, F. (2005). Manejo campesino de las selvas bajas y selección de especies arbóreas para barbechos mejorados en Hocabá, Yucatán. En F. Bautista & G. Palacio (Eds.), Caracterización y Manejo de los Suelos de la Península de Yucatán: Implicaciones Agropecuarias, Forestales y Ambientales (pp. 195–208). Universidad Autónoma de Campeche, Universidad Autónoma de Yucatán, Instituto Nacional de Ecología, México.

García-Gil, G., Palacio Prieto, J. L., & Ortíz Pérez, M. A. (2002). Reconocimiento geomorfológico e hidrográfico de la Reserva de la Biosfera de Calakmul, México. Investigaciones Geográficas, 48, 7–23.

García-Licona, J. B., Esparza-Olguín, L., & Martínez-Romero, E. (2014). Estructura y composición de la vegetación leñosa de selvas en diferentes estadios sucesionales en el ejido El Carmen II, Calakmul, México. Polibotánica, 38, 1–26.

Geekiyanage, N., Manage Goodale, U., Cao, K., & Kitajima, K. (2019). Plant ecology of tropical and subtropical karst ecosystems. Biotropica, 51, 626–640. https://doi.org/10.1111/btp.12696

Guo, Y., Wang, B., Mallik, A. U., Huang, F., Xiang, W., Ding, T., Wen, S., Lu, S., Li, D., He, Y., & Li, X. (2017). Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. Journal of Plant Ecology, 10(3), 450–460. https://doi.org/10.1093/jpe/rtw057

Hammer, Ø, Harper, D. A. T., & Ryan, P. D. (s.f.). PAST 4.06b: Paleontological Statistics Software Package for Education and Data Analysis. http://nhm2.uio.no/norlex/past/download.html

Hu, L., Su, Y., He, X., Wu, J., Zheng, H., Li, Y., & Wang, A. (2012). Response of soil organic carbon mineralization in typical Karst soils following the addition of 14-C-labeled rice starw and CaCO3. Journal of the Science of Food and Agriculture, 92(5), 1112–1118. https://doi.org/10.1002/jsfa.4647

Ibarra-Manríquez, G., Villaseñor, J. L., & Durán-García, R. (1995). Riqueza de especies y endemismos del componente arbóreo de la Península de Yucatán, México. Boletín de la Sociedad Botánica de México, 57, 49–77. http://dx.doi.org/10.17129/botsci.1476

Jardel-Peláez, E. J. (2015). Guía para la caracterización y clasificación de hábitats forestales. Comisión Nacional Forestal, Programa de las Naciones Unidas para el Desarrollo. http://www.conafor.gob.mx:8080/documentos/docs/49/6661Gu%C3%ADa%20web%20para%20la%20caracterizaci%C3%B3n%20y%20clasificaci%C3%B3n%20final.pdf

Jiang, Y. J., Yuan, D. X., Zhang, S., Kuang, M. S., Wang, J. L., Xie, S. Y., & Li, L. L. (2006). Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: a case study of Xiaojiang watersehed, Yunnan. Environmental Geology, 50, 911–918. https://doi.org/10.1007/s00254-006-0262-9

Lawrence, D., Vester, H. F., Pérez-Salicrup, D., Eastman, J. R., Turner, B. L., Turner, B., & Geoghegan, J. (2004). Integrated Analysis of Ecosystem Interactions with Land-Use-Change: the Southern Yucatán Peninsular Region. En R. DeFries, G. Asner, & R. Houghton (Eds.), Ecosystem interactions with land use change (pp. 310-336). American Geophysical Union.

Liu, C., Liu, Y., Guo, K., Qiao, X., Zhao, H., Wang, S., Zhang, L., & Cai, X. (2018). Effects of nitrogen, phosporus and potassium addition on the productivity of karst grassland: Plant functional group and community perspectives. Ecological Engineering, 117, 84–95. https://doi.org/10.1016/j.ecoleng.2018.04.008

Lu, X., Toda, H., Ding, F., Fang, S., Yang, W., & Xu, H. (2014). Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. European Journal of Soil Biology, 61, 49–57. https://doi.org/10.1016/j.ejsobi.2013.12.007

Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing.

Martínez, E., & Galindo Leal, C. (2002). La vegetación de Calakmul, Campeche, México: clasificación, descripción y distribución. Boletín de la Sociedad Botánica de México, 71, 7–32. https://doi.org/10.17129/botsci.1660

Martínez, E., Sousa, M., & Ramos-Álvarez, C. H. (2001). Listados florísticos de México. XXVII. Región de Calakmul, Campeche. Instituto de Biología, Universidad Nacional Autónoma de México.

Ochoa-Gaona, S., Ruíz-González, H., Álvarez-Montejo, D., Chan-Coba, G., & de Jong, B. H. J. (2018). Árboles de Calakmul. El Colegio de la Frontera Sur.

Pan, F., Liang, Y, Zhang, W., Zhao, J., & Wang, K. (2016). Enhance Nitrogen availability in karst ecosystems by oxalic acid release in the rhizophere. Frontiers in Plant Science, 7, 1–9. https://doi.org/10.3389/fpls.2016.00687

Pan, F., Liang, Y., Wang, K., & Zhang, W. (2018). Responses of fine root functional traits to soil nutrient limitations in a Karst ecosystem of southwest China. Forest, 9(12), 743–759. https://doi.org/10.3390/f9120743

Pérez-García, E. A., Sevilha, A. C., Meave, J. A., & Scariot, A. (2009). Floristic differentiation in limestone outcrops of southern Mexico and central Brazil: a beta approach. Boletín de la Sociedad Botánica de México, 84, 45–58. https://doi.org/10.17129/botsci.2294

Pérez-Sarabia, J. E., Duno de Stefano, R., Carnevali Fernández-Concha, G., Ramírez-Morillo, I., Méndez-Jiménez, N., Zamora-Crescencio, P., Gutiérrez-Báez, C., & Cetzal-Ix, W. (2017). El conocimiento florístico de la Península de Yucatán, México. Polibotánica, 44, 39–49.

Secretaría de Medio Ambiente y Recursos Naturales (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación, México.

Umer, M. I., Rajab, S. M., & Ismail, H. K. (2020). Effect of CaCO3 form on soil inherent quality properties of calcareous soils. Materials Science Forum, 1002, 459–467. https://doi.org/10.4028/www.scientific.net/MSF.1002.459

Vester, H. F., Lawrence, D., Eastman, J. R., Turner, B. L., Calmé, S., Dickson, R., Pozo, C., & Sangermano, F. (2007). Land change in the southern Yucatán and Calakmul Biosphere Reserve: effects on habitat and biodiversity. Ecological Applications, 17(4), 989–1003. https://doi.org/10.1890/05-1106

Wang, K., Zhang, C., Chen, H., Yue, Y., Zhang, W., Zhang, M., & Fu, Z. (2019). Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecology, 34(12), 2743–2763. https://doi.org/10.1007/s10980-019-00912-w

Wendt, T. (1993). Composition, floristics affinities, and origins of the canopy tree flora of the Mexican Atlantic slope rain forest. En T. P. R. Ramamoorthy, R. Bye, A. Lot, & J. Fa (Eds.), Biological Diverstiy of Mexico: Origins and Distribution (pp. 595–680). Nueva York: Oxford University Press.

World Flora Online. (2021). World Flora Online. http://www.worldfloraonline.org

Zamora-Crescencio, P., Domínguez-Carrasco, M. R., Villegas, P., Gutiérrez-Báez, C., Manzanero-Acevedo, L. A., Ortega-Hass, J. J., & Puch-Chávez, R. (2012). Composición florística y estructura de la vegetación secundaria en el norte del estado de Campeche, México. Boletín de la Sociedad Botánica de México, 89, 27–35. https://doi.org/10.17129/botsci.368

Zhang, P., Li, L., Pan, G., & Ren, J. (2006). Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China. Environmental Geology, 51, 609–619. https://doi.org/10.1007/s00254-006-0356-4

Zhang, X., Bai, X., & He, X. (2011). Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China. Carbonates Evaporites, 26, 149–153. https://doi.org/10.1007/s13146-011-0043-8

Zhu, H., He, X., Wang, K., Su, Y., & Wu, J. (2012). Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. European Journal of Soil Biology, 51, 1–7. https://doi.org/10.1016/j.ejsobi.2012.03.003

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2021 Ligia Esparza-Olguín, Eduardo Martínez-Romero

Descargas

Los datos de descargas todavía no están disponibles.