Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Efectos de la contaminación por microplásticos en la abundancia y composición de la meiofauna intersticial
PDF (English)
HTML (English)

Palabras clave

benthos
coastal zone
meiofauna abundance
microplastic abundance
pollution effect
sandy beaches
bentos
zona costera
abundancia de meiofauna
abundancia de microplásticos
efecto de contaminación
playas arenosas

Cómo citar

Lagos, A. M., Leon, M. V., Colorado, A., Giraldo, D., Fragozo, L., Quiroga, S. Y., & Martínez, A. (2023). Efectos de la contaminación por microplásticos en la abundancia y composición de la meiofauna intersticial. Revista De Biología Tropical, 71(1), e50031. https://doi.org/10.15517/rev.biol.trop.v71i1.50031

Resumen

Introducción: La contaminación por microplásticos es un problema global en los ecosistemas marinos, con impacto sobre microorganismos y ecosistemas en varios niveles espaciales. Las playas arenosas son ambientes de deposición donde se tiende a acumular gran cantidad de microplásticos. La co-ocurrencia de meiofauna intersticial y microplásticos en granos de arena plantea la pregunta de que si la acumulación de microplásticos en sedimentos afecta la abundancia y composición de comunidades de meiofauna. Objetivo: Probar la hipótesis de que microplásticos afectan la meiofauna de playas arenosas urbanas. Métodos: Estudiamos las tres principales playas arenosas urbanas de Santa Marta, Colombia: El Rodadero, Bahía Santa Marta y Taganga. Estas son similares en morfología y presiones externas, y difieren de las otras playas de la región. En abril 2019 recolectamos 81 muestras de arena, distribuidas de manera equidistante en la zona intermareal (nivel intermareal superior, medio y bajo). Aplicamos modelos lineales generalizados de abundancia, y pruebas permutacionales multivariantes a la composición de comunidades. Resultados: Identificamos 17 grupos taxonómicos de meiofauna, y partículas de microplástico (principalmente fibras de 45-500 micras) distribuidos equitativamente a lo largo de las playas y niveles intermareales. Hubo más meiofauna en el nivel intermareal medio, y en sedimentos de grano mediano y fino. A niveles intermareales más bajos, sitios con más microplásticos tuvieron menos meiofauna. Microplásticos “explicaron” 39 % de la variación en comunidades de meiofauna a niveles intermareales bajos. Conclusión: La acumulación de microplásticos tiene un impacto negativo sobre las comunidades de meiofauna intersticial. Esto no es de sorprender: los microplásticos ocupan el mismo volumen físico que estos animales, presuntamente modificando la estructura de sedimentos y la composición del agua intersticial.

Objetivo: como un paso adelante en esa dirección, se analizó la distribución de la microbasura y los principales grupos de meiofauna intersticial en playas arenosas y urbanas de la región de Santa Marta, Colombia, y su posible relación entre ambos  factores.

Métodos: se seleccionaron las tres principales playas arenosas y urbanas de Santa Marta, norte de Colombia: El Rodadero, Bahía de Santa Marta y Taganga. Todas ellas son muy similares entre sí por su morfología y presiones externas, y difieren marcadamente de otras playas de la región. El muestreo se realizó en abril de 2019 con un total de 81 muestras distribuidas en la zona supramareal, zona intermareal y zona submareal. En cada punto, se recolectaron muestras para la cuantificación de microplásticos, la caracterización de comunidades  de la meiofauna  y el análisis granulométrico.

Resultados: se extrajeron un total de 1131 partículas de basuras, dominadas por fibras de entre 45 y 500 micrometros . Los  modelos lineales generalizados mostraron que los microbasuras  se distribuyeron uniformente  en  las playas y los niveles de las mareas, mientras que la abundancia de la meiofauna se vio significativamente afectada por la granulometría y el nivel de las mareas.  Se detecto una correlación significativa entre la abundancia de microplásticos y la meiofauna en esos niveles, pese a la estimación  pequeña. Además, las pruebas de permutaciòn  multivariadas mostraron que la abundancia de microbasura explicó significativamente el 39,3% de la variación de las comunidades de la meiofauna en los niveles de marea más bajos.

Conclusiones: los resultados sugieren que la microbasura que se acumulan entre los granos de arena de la playa impactan negativamente en la diversidad de la meiofauna. Esto no sorprende, dado que los microbasura ocupa el mismo espacio físico que estos animales, posiblemente modificando la estructura de los sedimentos y la composición del agua intersticial.

 

https://doi.org/10.15517/rev.biol.trop..v71i1.50031
PDF (English)
HTML (English)

Citas

Acosta-Coley, I., Mendez-Cuadro, D., Rodríguez-Cavallo, E., de la Rosa, J., & Olivero-Verbel, J. (2019). Trace elements in microplastics in Cartagena: a hotspot for plastic pollution at the Caribbean. Marine Pollution Bulletin, 139, 402–411.

Acosta-Coley, I., & Olivero-Verbel, J. (2015). Microplastic resin pellets on an urban tropical beach in Colombia. Environmental Monitoring and Assessment, 187, 435. https://doi.org/10.1007/s10661-015-4602-7

Alexeev, D. K., & Galtsova, V. V. (2012). Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Science, 6, 183–195. https://doi.org/10.1016/j.polar.2012.04.001

Alves, A. S., Caetano, A., Costa, J. L., Costa, M. J., & Marques, J. C. (2015). Estuarine intertidal meiofauna and nematode communities as indicators of ecosystem recovery following mitigation measures. Ecological Indicators, 54, 184–196. https://doi.org/10.1016/j.ecolind.2015.02.013

Altamar, J., Correa-Helbrum, J., Restrepo-Leal, D., & Robles-Algarín, C. (2020). Reconstructed data of landings for the artisanal beach seine fishery in the marine-coastal area of Taganga, Colombian Caribbean Sea. Data in Brief, 30, 105604. https://doi.org/10.1016/j.dib.2020.105604

Alomar, C., Estarellas, F., & Deudero, S. (2016). Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size. Marine Environmental Research, 115, 1–10. https://doi.org/10.1016/j.marenvres.2016.01.005

Ape, F., Sará, G., Airoldi, L., Mancuso, F., & Mirto, S. (2017). Influence of environmental factors and biogenic habitats on intertidal meiofauna. Hydrobiologia, 807, 349–366. https://doi.org/10.1007%2Fs10750-017-3410-1

Álvarez-Zeferino, J., Ojeda-Benítez, S., Cruz-Salas, A. A., Martínez-Salvador, C., & Vázquez-Morillas, A. (2020). Microplastics in Mexican beaches. Resources, Conservation & Recycling, 1551, 104633. https://doi.org/10.1016/j.resconrec.2019.104633

Buchanan, J. B. (1984). Sediment analysis. In N. A., Holme, & A. D. McIntyre (Eds.), Methods for the Study of Marine Benthos (pp. 41–63). Blackwell Scientific Publications.

Browne, M. A., Crump, P., Niven, S. J., Teuten, E. L., Tonkin, A., Galloway, T., & Thompson, R. C. (2011). Accumulations of microplastic on shorelines worldwide: sources and sinks. Environmental Science & Technology, 45, 9175−9179. https://doi.org/10.1021/es201811s

Bezerra, T. N. C., Genevois, B., & Fonsêca-Genevois, V. (1997). Influência da granulometria na distribuição e adaptação da meiofauna na praia arenosa do Istmo de Olinda PE. In S. A. Silva, P. A. Grohmann & A. M. Esteves (Eds.), Ecologia de Praias Arenosas do Litoral Brasileiro (pp. 107–116). Programa de Pós-Graduação em Ecologia da UFRJ.

Baia, E., & Venekey, V. (2019). Distribution patterns of meiofauna on a tropical macrotidal sandy beach, with special focus on nematodes (Caixa d’Água, Amazon Coast, Brazil). Brazilian Journal of Oceanography, 67, e19230. https://doi.org/10.1590/s1679-87592019023006701

Botero, C. M., & Zienliski, S. (2020). The implementation of a world-famous tourism ecolabel triggers political support for beach management. Tour Management Perspectives, 35, 100691. https://doi.org/10.1016/j.tmp.2020.100691

Curini-Galletti, M., Artois, T., Delogu, V., De Smet, W. H., Fontaneto, D., Jondelius, U., Leasi, F., Martínez, A., Meyer-Wachsmuth, I., Nilsson, K. S., Tongiorgi, P., Worsaae, K., & Todaro, M. A. (2012). Patterns of Diversity in Soft-Bodied Meiofauna: Dispersal Ability and Body Size Matte. PLoS One, 7, e33801. https://doi.org/10.1371/journal.pone.0033801

Carson, H. S., Colbert, S. L., Kaylor, M. J., & McDermid, K. J. (2011). Small plastic debris changes water movement and heat transfer through beach sediments. Marine Pollution Bulletin, 62, 1708–1713. https://doi.org/10.1016/j.marpolbul.2011.05.032

Claessens, M., De Meester, S., Van Landuyt, L., De Clerck, K., & Janssen, C. R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 62, 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030

Coley, R., Hardiman, G., & O’Driscolla, K. (2020). Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Studies in Chemical and Environmental Engineering, 2, 100010. https://doi.org/10.1016/j.cscee.2020.100010

Cannon, S. M. E., Lavers, J., & Figueireda, B. (2016). Plastic ingestion by fish in the southern hemisphere: a baseline study and review of methods. Marine Pollution Bulletin, 107, 286–291. https://doi.org/10.1016/j.marpolbul.2016.03.057

Cole, M., Lindeque, P. K., Fileman, E. S., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 47, 6646–6655. https://doi.org/10.1021/es400663f

Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

Correa, I., & Morton, R. (2010). Caribbean Coast of Colombia. In E.C. F. Bird (Ed.), Encyclopedia of the World's Coastal Landforms (pp. 259–264). Springer.

Castro, L. R., Meyer, R. S., Shapiro, B., Shirazi, S., Cutler, S., Lagos, A. M., & Quiroga, S. Y. (2021). Metabarcoding meiofauna biodiversity assessment in four beaches of Northern Colombia: effects of sampling protocols and primer choice. Hydrobiologia, 848, 3407–3426. https://doi.org/10.1007/s10750-021-04576-z

Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44, 842–852. https://doi.org/10.1016/S0025-326X(02)00220-5

Desforges, J. P. W., Galbraith, M., & Ross, P. S. (2015). Ingestion of microplastics by zooplankton in the northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology, 69, 320–330. https://doi.org/10.1007/s00244-015-0172-5

Defeo, O., & McLachlan, A. (2005). Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multiscale analysis. Marine Ecology Progress Series, 295, 1–20. https://doi.org/10.3354/meps295001

Di, M., & Wang, J. (2018). Microplastic in surface waters and sediments of the Three Gorges Reservoir, China. Science of the Total Environment, 616, 1620–1627. https://doi.org/10.1016/j.scitotenv.2017.10.150

Faraday, S. (2019). Microplastics as a new, ubiquitous pollutant: Strategies to anticipate management and advise seafood consumers. Marine Policy, 104, 103–107. https://doi.org/10.1016/j.marpol.2019.02.020

Fossi, M. C., Coppola, D., Baini, M., Giannetti, M., Guerranti, C., Marsili, L., Panti, C., de Sabata, E., & Clo, S. (2014). Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). Marine Environmental Research, 100, 17-24. https://doi.org/10.1016/j.marenvres.2014.02.002

Fanini, L., Defeo, O., & Elliott, M. (2020). Advances in sandy beach research – Local and global perspectives. Estuarine, Coastal and Shelf Science, 234, 106646. https://doi.org/10.1016/j.ecss.2020.106646

Fonseca, G., Norenburg, J., & Di Domenico, M. (2014). Diversity of marine meiofauna on the coast of Brazil. Marine Biodiversity, 44, 459–462. https://doi.org/10.1007/s12526-014-0261-0

Folk, R. L., & Ward, W. C. (1957). A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Fueser, H., Mueller, M. T., & Traunspurger, W. (2020). Ingestion of microplastics by meiobenthic communities in small-scale microcosm experiments. Science of the Total Environment, 746, 141276. https://doi.org/10.1016/j.scitotenv.2020.141276

Fueser, H., Mueller, M. T., Weiss, L., Höss, S., & Traunspurger, W. (2019). Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size. Environmental Pollution, 255, 113227. https://doi.org/10.1016/j.envpol.2019.113227

Fuentes-Reines, J. M., Suárez-Morales, E., & Eslava-Eljaiek, P. (2021). Occurrence of Notodiaptomus maracaibensis Kiefer, 1954 (Copepoda, Calanoida, Diaptomidae) from an ephemeral pond in northern Colombia. Intropica, 16(2), 125–132. https://doi.org/10.21676/23897864.3977

Giere, O. (2009). Meiobenthology: The microscopic motile fauna of aquatic sediments (2nd ed.). Springer-Verlag.

Giere, O. (2019). Future trend lines in ecological meiobenthos research. In O. Giere (Ed.), Perspectives in Meiobenthology Reviews, Reflections and Conclusions (pp. 37–49). Springer-Verlag.

González-Cueto, J., Quiroga, S., & Norenburg, J. (2014). A shore-based preliminary survey of marine ribbon worms (Nemertea) from the Caribbean coast of Colombia. ZooKeys, 439, 83–108. https://doi.org/10.3897/zookeys.439.5965

Gusmão, F., Domenico, M. D., Amaral, A. C. Z., Martínez, A., Gonzalez, B. C., Worsaae, K., do Sul, J. A. I., & da Cunha-Lana, P. (2016). In situ ingestion of microfibres by meiofauna from sandy beaches. Marine Pollution Bulletin, 216, 584-590. https://doi.org/10.1016/j.envpol.2016.06.015

Garcés-Ordóñez, O., Espinosa, L., Pereira, R., Barroso, B., & Meigikos, R. (2020b). Plastic litter pollution along sandy beaches in the Caribbean and Pacific coast of Colombia. Environmental Pollution, 267, 115495.

Garcés-Ordóñez, O., Espinosa, L., Pereira, R., & Costa, M. (2020a). The impact of tourism on marine litter pollution on Santa Marta beaches, Colombian Caribbean. Marine Pollution Bulletin, 160, 111558. https://doi.org/10.1016/j.marpolbul.2020.111558

García, F., Palacio, C., & García, U. (2011). Constituyentes de marea en la bahía de Santa Marta (Colombia). Dyna, 78, 142–150.

Gheskiere, T., Vincx, M., Weslawski, J. M., Scapini, F., & Degraer, S. (2005). Meiofauna as descriptor of tourism-induced changes at sandy beaches. Marine Environmental Research, 60, 245–265. https://doi.org/10.1016/j.marenvres.2004.10.006

Haegerbaeumer, A., Mueller, M. T., Fueser, H., & Traunspurger, W. (2019). Impacts of micro- and nano-sized plastic particles on benthic invertebrates: A literature review and gap analysis. Frontiers of Environmental Science & Engineering, 7, 1–33. https://doi.org/10.3389/fenvs.2019.00017

Hourston, M., Warwick, R. M., Valesini, F. J., & Potter, I. C. (2005). To what extent are the characteristics of nematode assemblages in nearshore sediments on the west Australian coast related to habitat type, season and zone? Estuarine, Coastal and Shelf Science, 64, 601–612. https://doi.org/10.1016/j.ecss.2005.04.001

Hidalgo-Ruz, V., Gutow. L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology, 46, 3060–3075. https://doi.org/10.1021/es2031505

de Jonge, V. N., & Bouwman, L. A. (1977). A simple density Kennedy: A rapid-freezing method separation technique for quantitative isolation of meiobenthos using the colloidal silica Ludox-TM. Marine Biology, 42, 143–148.

Kutralam-Muniasamy, G., Pérez-Guevara, F., Elizalde-Martínez, I., & Shruti, V. C. (2020). Review of current trends, advances and analytical challenges for microplastics contamination in Latin America. Environmental Pollution, 267, 115463. https://doi.org/10.1016/j.envpol.2020.115463

Lagos, A. M. (2018). Meiofauna intermareal de la región de Santa Marta (Tesis de Maestría). Universidad Nacional de Colombia, Colombia.

Lusher, A. (2015). Microplastics in the Marine Environment: Distribution, Interactions and Effects, In M. Bergmann, L. Gutow, & M. Klages (Eds.), Marine Anthropogenic Litter (pp. 245–307). Springer International Publishing.

Lots, F. A. E., Behrens, P., Vijver, M. G., Horton, A. A., & Bosker, T. (2017). A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in European beach sediment. Marine Pollution Bulletin, 123, 219-226. https://doi.org/10.1016/j.marpolbul.2017.08.057

Liebezeit, G., & Dubaish, F. (2012). Microplastics in beaches of the East Frisian islands Spiekeroog and Kachelotplate. Bulletin of Environmental Contamination and Toxicology, 89, 213-217. https://doi.org/10.1007/s00128-012-0642-7

Li, H. X., Getzinger, G. J., Ferguson, P. L., Orihuela, B., Zhu, M., & Rittschof, D. (2016). Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle Amphibalanus amphitrite. Environmental Science & Technology, 5, 924–931. https://doi.org/10.1021/acs.est.5b02781

Lagos, A. M., Leon, M. V., Quiroga, S., & Martínez, A. (2018). Interstitial annelids from the Caribbean coast of Colombia. Revista de Biología Tropical, 66, 658-673. http://doi.org/10.15517/rbt.v66i2.33399

Liñero-Arana, I., Ojeda, S., & Amaro, M. E. (2012). Variación espacio-temporal de la meiofauna submareal en una playa arenosa nororiental de Venezuela. Revista de Biología Tropical, 61, 59-73.

Leasi, F., Sevigny, J. L., Laflamme, E. M., Artois, T., Curini-Galletti, M., Navarrete, A., Di Domenico, M., Goetz, F., Hall, J. A., Hochberg, R., Jörger, K. M., Jondelius, U., Todaro, M. A., Wirshing, H. H., Norenburg, L. J., & Thomas, W. K. (2018). Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Communications Biology, 1, 1-12. http://doi.org/10.1038/s42003-018-0119-2

Lu, K., Qiao, R., An, H., & Zhang, Y. (2018). Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere, 202, 514–520. https://doi.org/10.1016/j.chemosphere.2018.03.145

Mathalon, A., & Hill, P. (2014). Microplastic fibers in the intertidal ecosystem sur- rounding Halifax Harbor, Nova Scotia. Marine Polluttion Bulletin, 81, 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018

McLachlan, A., & Brown, A. C. (2006). The ecology of sandy shores. Academic Press.

Martínez, A., Di Domenic, M., Leasi, F., Curini-Galletti, M., Todaro, M. A., Dal Zotto, M., Gobert, S., Artois, T., Norenburg, J., Jörger, K., Núñez, J., Fontaneto, D., & Worsaae, K. (2019). Patterns of diversity of soft-bodied meiofauna in an oceanic island, Lanzarote (Canary Islands). Marine Biodiversity, 49, 2033–2055. https://doi.org/10.1007/s12526-019-01007-0

Martínez, A., Eckert, E. M., Artois, T., Careddu, G., Casu, M., Curini-Galletti, M., Gazale, V., Gobert, S., Ivanenko, V. N., Jondelius, U., Marzano, M., Pesole, G., Zanello, A., Todaro, M. A., & Fontaneto, D. (2020). Human access impacts biodiversity of microscopic animals in sandy beaches. Communications Biology, 3, 1-9. https://doi.org/10.1038/s42003-020-0912-6

Mueller, M. T., Fueser, H., Höss, S., & Traunspurger, W. (2020). Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion. Ecological Indicators, 118, 106698. https://doi.org/10.1016/j.ecolind.2020.106698

Mancera-Pineda, J. E. M., Pinto, G., & Vilardy, S. (2013). Patrones de distribución estacional de masas de agua en la bahía de Santa Marta, Caribe colombiano: importancia relativa del upwelling y outwelling. Bulletin of Marine and Coastal Research, 2, 329–360. https://doi.org/10.25268/bimc.invemar.2013.42.2.55

MSFD-TSGML. (2013). Guidance on monitoring of marine litter in European Seas: a guidance document within the common implementation strategy for the marine strategy framework directive. EUR-26113 EN. JRC Scientific and Policy Reports JRC83985. https://mcc.jrc.ec.europa.eu/documents/201702074014.pdf

Nadal, M. A., Alomar, C., & Deudero, S. (2016). High levels of microplastic ingestion by the semipelagic fish Bogue Boops boops (L.) around the Balearic Islands. Environmental Pollution, 214, 517–523. https://doi.org/10.1016/j.envpol.2016.04.054

Nor, N. H. M., & Obbard, J. (2014). Microplastics in Singapore's coastal mangrove ecosystem. Marine Pollution Bulletin, 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & WagnerVegan, H. (2018). Community Ecology Package. R package version 2, 5–2. https://CRAN.R-project.org/package=vegan

Ogonowski, M., Schür, C., Jarsén, Å., & Gorokhova, E. (2016). The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS One, 11, e0155063. https://doi.org/10.1371/journal.pone.0155063

Pereira, T. J., Gingold, R., Villegas, A. D. M., & Rocha-Olivares, A. (2018). Patterns of spatial variation of meiofauna in sandy beaches of Northwestern Mexico with contrasting levels of disturbance. Thalassas, 34, 53–63. https://doi.org/10.1007/s41208-017-0038-x

Piperagkas, O., Papageorgiou, N., & Karakassis, I. (2019). Qualitative and quantitative assessment of microplastics in three sandy Mediterranean beaches, including different methodological approaches. Estuarine, Coastal and Shelf Science, 219, 169–175. https://doi.org/10.1016/j.ecss.2019.02.016

Portz, L., Portantiolo-Manzolli, R., Vasquez-Herrera, G., Laiton-Garcia, L., Villate, D. A., & do Sul, J. A. I. (2020). Marine litter arrived: Distribution and potential sources on an unpopulated atoll in the Seaflower Biosphere Reserve, Caribbean Sea. Marine Pollution Bulletin, 157, 111323.

Peng, G., Zhu, B., Yang, D., Su, L., Shi, L., & Li, D. (2017). Microplastic in sediments of the Changjaiang Estuary, China. Environmental Pollution, 225, 283–290. https://doi.org/10.1016/j.envpol.2016.12.064

R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Rodríguez, J. G. (2004). Community structure of intertidal meiofauna along a gradient of morphodynamic states on an exposed North Sea beach. Sarsia, 89, 22–32. https://doi.org/10.1080/00364820310003307

Rochman, C. M., Hoh, E., Kurobe, T., & The, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3, 1–7. https://doi.org/10.1038/srep03263

Rodríguez, J. G., López, J., & Jaramillo, E. (2001). Community structure of the intertidal meiofauna along a gradient of morphodynamic sandy beach types in southern Chile. Revista Chilena de Historia Natural, 74, 885–897.

Rangel-Buitrago, N. G., Anfuso, G., & Williams, A. T. (2015). Coastal erosion along the Caribbean coast of Colombia: magnitudes, causes and management. Ocean & Coastal Management, 114, 129–144. https://doi.org/10.1016/j.ocecoaman.2015.06.024

Rangel-Buitrago, N. G., Ruiz, A. G., & López, N. T. (2019). Grain–size analysis and characterization of sedimentary environments of the Sierra Nevada de Santa Marta (SNSM) coastal zone, caribbean of Colombia. Revista ITTPA, 1, 13–19.

Rubio-Polanía, J. C., & Trujillo-Arcila, C. A. (2013). Características granulométricas de los fondos blandos en un área de la bahía de Taganga (Colombia) influenciada por la instalación de refugios bentónicos. Revista U.D.C.A, 16, 193-203. https://doi.org/10.31910/rudca.v16.n1.2013.875

Somerfield, P. (2008). Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008). Marine Ecology Progress Series, 372, 303-306. https://doi.org/10.3354/meps07841

Sevilla-Hernández, M. (2016). Ácaros marinos (Arachnida: Acari) asociados al alga Ulva lactuca de la bahía de Taganga (Santa Marta, Colombia) (Tesis de Bachillerato). Universidad del Magdalena, Colombia.

Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185, 77–83. https://doi.org/10.1016/j.envpol.2013.10.013

Strungaru, S. A., Jijie, R., Nicoara, M., Plavan, G., & Faggio, C. (2019) Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology. TrAC Trends in Analytical Chemistry, 110, 116–128. https://doi.org/10.1016/j.trac.2018.10.025

Talvitie, J., Heinonen, M., Pääkkönen, J. P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science & Technology, 72, 1495–1504. https://doi.org/10.2166/wst.2015.360

Tsang, Y. Y., Mak, C. W., Liebich, C., Lam, S. W., Sze, E. T., & Chan, K. M. (2017). Microplastic pollution in the maine eater and sediments of Hong Kong. Marine Pollution Bulletin, 115, 20–28. https://doi.org/10.1016/j.marpolbul.2016.11.003

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304, 838.

Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution, 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008

Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013

Von Moos, N., Burkhardt-Holm, P., & Koehler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science & Technology, 46, 327–335. https://doi.org/10.1021/es302332w

Wakkaf, T., Allouche, M., Harrath, A. H., Mansour, L., Alwasel, S., Thameemul-Ansari, K. G. M., Beyrem, H., Sellami, B., & Boufahja, F. (2020). The individual and combined effects of cadmium, polyvinyl chloride (PVC) microplastics and their polyalkylamines modified forms on meiobenthic features in a microcosm. Environmental Pollution, 266, 115263. https://doi.org/10.1016/j.envpol.2020.115263

Wesch, C., Bredimus, K., Paulus, M., & Klein, R. (2016) Towards the suitable monitoring of ingestion of microplastics by marine biota: a review. Environmental Pollution, 218, 1200-1208. https://doi.org/10.1016/j.envpol.2016.08.076

Wright, L. D., Chappell, J., Thom, B. G., Bradshaw, M. P., & Cowell, P. (1979). Morphodynamics of reflective and dissipative beach and inshore systems: southeastern Australia. Marine Geology, 32, 105–140. https://doi.org/10.1016/0025-3227(79)90149-X

Willis, K. A., Eriksen, R., Wilcox, C., & Hardesty, B. D. (2017). Microplastic distribution at different sediment depths in an urban estuary. Frontiers in Marine Science, 4, 419. https:/doi.org/10.3389/fmars.2017.00419

Wang, T., Hu, M., Song, L., Yu, J., Liu, R., Wang, S., Wang, Z., Sokolova, I. M., Huang, W., & Wang, Y. (2020). Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environmental Pollution, 266, 115137. https://doi.org/10.1016/j.envpol.2020.115137

Wright, S. L., Rowe, D., Thompson, R. C., & Galloway, T. S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Current Biology, 23, R1031-R1033. https://doi.org/10.1016/j.cub.2013.10.068

Wright, L. D., & Short, A. D. (1984). Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology, 56, 93–118. https://doi.org/10.1016/0025-3227(84)90008-2

Zubris, K. A. V., & Richards, B. K. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138, 201–211. https://doi.org/10.1016/j.envpol.2005.04.013

Zeppilli, D., Sarrazin, J., Leduc, D., Martinéz-Arbizu, P., Fontaneto, D., Fontanier, C., Gooday, A. J., Kristensen, R. M., Ivanenko, V. N., Sørensen, M. V., Vanreusel, A., Thébault, J., Mea, M., Allio, N., Andro, T., Arvigo, A., Castrec, J., Danielo, M., Foulon, V., Fumeron, R., Hermabessiere, L., Hulot, V., James, T., Langonne-Augen, R., Le Bot, T., Long, M., Mahabror, D., Morel, Q., Pantalos, M., Pouplard, E., Raimondeau, L., Rio-Cabello, A., Seite, S., Traisnel, G., Urvoy, K., Van Der Stegen, T., Weyand, M., & Fernandes, D. (2015). Is the meiofauna a good indicator for climate change and anthropogenic impact. Marine Biodiversity, 45, 505–535. https://doi.org/10.1007/s12526-015-0359-z

Zhu, L., Wang, H., Chen, B., Sun, X., Qu, K., & Xia, B. (2019). Microplastic ingestion in deep-sea fish from the South China Sea. Science of the Total Environment, 677, 493–501. https://doi.org/10.1016/j.scitotenv.2019.04.380

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2023 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.