Resumen
Introducción: El pez payaso (Amphiprion ocellaris) es la especie de pez más popular en el comercio de acuarios marinos, sin embargo, se carece de información sobre la fisiología digestiva durante la ontogenia larvaria que ayudaría en el diseño de dietas específicas, así como protocolos de manejo en la especie. Objetivo: Caracterizar el desarrollo temprano de las enzimas digestivas de A. ocellaris durante la ontogenia larvaria. Métodos: Desde la eclosión hasta los 38 días después de la eclosión (DAH), se analizó la actividad específica de las proteasas ácidas, proteasas alcalinas, tripsina, quimotripsina, leucina aminopeptidasa y lipasa, y se realizaron zimogramas de proteasas ácidas y alcalinas. Resultados: En la eclosión se detectó actividad enzimática con todas las técnicas medidas. La actividad de las proteasas ácidas aumentó desde la eclosión hasta los 38 DAH. Las proteasas alcalinas, tripsina, quimotripsina y leucina aminopeptidasa, mostraron el mismo patrón y la máxima actividad al 8vo DAH, disminuyendo en el 38vo DAH. La lipasa mostró picos de actividad en el 8vo y 30vo DAH. El zimograma ácido mostró una sola banda, que apareció en el 8vo DAH. Se revelaron un total de ocho proteasas alcalinas (154.2, 128.1, 104.0, 59.8, 53.5, 41.9, 36.5 y 25.1 KDa), mostrando siete bandas al 1er DAH y todas las bandas del 3er al 8vo DAH, disminuyendo a dos bandas (41.9 y 25.1 KDa) a los 38 DAH. Conclusiones: A. ocellaris muestra un estómago funcional al 8vo DAH, donde la especie en el 38vo DAH muestra un patrón enzimático digestivo a omnívoro con tendencia a carnívoro.
Objetivo: Caracterizar el desarrollo temprano de las enzimas digestivas de A. ocellaris durante la ontogenia larvaria.
Métodos: Desde la eclosión hasta los 38 días después de la eclosión (DAH), se analizó la actividad específica de las proteasas ácidas, proteasas alcalinas, tripsina, quimotripsina, leucina aminopeptidasa y lipasa, y se realizaron zimogramas de proteasas ácidas y alcalinas.
Resultados: En la eclosión se detectó actividad enzimática de todas las técnicas medidas. La actividad de las proteasas ácidas aumentó desde la eclosión hasta los 38 DAH. Las proteasas alcalinas, tripsina, quimotripsina y leucina aminopeptidasa, mostraron el mismo patrón y la máxima actividad al 8vo DAH, disminuyendo en el 38vo DAH. La lipasa mostró picos de actividad en el 8vo y 30vo DAH. El zimograma ácido mostró una sola banda, que apareció en el 8vo DAH. Se revelaron un total de ocho proteasas alcalinas (154,2, 128,1, 104,0, 59,8, 53,5, 41,9, 36,5 y 25,1 KDa), mostrando siete bandas al 1er DAH y todas las bandas del 3er al 8vo DAH, disminuyendo a dos bandas (41,9 y 25,1 KDa) a los 38 DAH.
Conclusiones: A. ocellaris muestra un estómago funcional al 8vo DAH, donde la especie en el 38vo DAH muestra un patrón enzimático digestivo a omnívoro con tendencia a carnívoro.
Citas
Anson, M. L. (1938). The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. Journal of General Physiology, 22(1), 79–89. https://doi.org/10.1085/jgp.22.1.79
Balon, E. K. (1986). Types of feeding in the ontogeny of fishes and the life-history model. Environmental Biology of Fishes, 16, 11–24. https://doi.org/10.1007/BF00005156
Balon, E. K. (1990). Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. Guelph Ichthyology Reviews, 1, 1–42.
Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Chen, J. Y., Zeng, C., Jerry, D. R., & Cobcroft, J. M. (2019). Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Reviews in Aquaculture, 12(3), 1518–1541. https://doi.org/10.1111/raq.12394
Davis, B. J. (1964). Disc electrophoresis – II Method and application to human serum proteins. Annals of the New York Academy of Sciences, 121(2), 404–427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
Díaz-López, M., Moyano, F. J., Alarcón, F. J., García-Carreño, F. L., & Navarrete del Toro, M. A. (1998). Characterization of fish acid proteases by substrate-gel electrophoresis. Comparative Biochemistry and Physiology B, 121(4), 369–377. https://doi.org/10.1016/S0305-0491(98)10123-2
Del-Mar, E. G, Largman, C., Brodrick, J., & Geokas, M. (1979). A sensitive new substrate for chymotrypsin. Analytical Biochemistry, 99(2), 316–320. https://doi.org/10.1016/S0003-2697(79)80013-5
Delbare, D., Lavens, P., & Sorgeloos, P. (1995). Clownfish as a reference model for nutritional experiments and determination of egg/larval quality. In P. Lavens (Ed.), Fish and Shellfish Larviculture Symposium (Vol. 24, pp. 22–25). European Aquaculture Society, Special Publication.
Erlanger, B., Kokowsky, N., & Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95(2), 271–278. https://doi.org/10.1016/0003-9861(61)90145-x
García-Carreño, F. L., Dimes, L. E., & Haard, N. F. (1993). Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214(1), 65–69. https://doi.org/10.1006/abio.1993.1457
Green, B. S., & McCormick, M. I. (2001). Ontogeny of the digestive and feeding systems in the anemone fish Amphiprion melanopus. Environmental Biology of Fishes, 61, 73–83. https://doi.org/10.1023/A:1011044919990
Gordon, A., Kaiser, H., Britz, P., & Hecht, T. (2000). Effect of feed type and age-at-weaning on growth and survival of clownfish Amphiprion percula (Pomacentridae). Aquarium Science and Conservation, 2, 215–226. https://doi.org/10.1023/A:1009652021170
Gordon, A. K., & Hetch, T. (2002). Histological studies on the development of digestive system of the clownfish Amphiprion percula and the time of weaning. Journal of Applied Ichthyology, 18(2), 113–117. https://doi.org/10.1046/j.1439-0426.2002.00321.x
Khoa, T. N. D., Waqalevu, V., Honda, A., Shiozaki, K., & Kotani, T. (2019). Early ontogenetic development, digestive enzymatic activity and gene expression in red sea bream (Pagrus major). Aquaculture, 512, 734283. https://doi.org/10.1016/j.aquaculture.2019.734283
Khoa, T. N. D., Waqalevu, V., Honda, A., Shiozaki, K., & Kotani, T. (2021). An integrative description of the digestive system morphology and function of Japanese flounder (Paralichthys olivaceus) during early ontogenetic development. Aquaculture, 531, 735855. https://doi.org/10.1016/j.aquaculture.2020.735855
Khoo, M. L., Das, S. K., & Ghaffar, M. A. (2018). Growth pattern, diet and reproductive biology of the clownfish Amphiprion ocellaris in waters of Pulau Tioman. The Egyptian Journal of Aquatic Research, 44(3), 233–239. https://doi.org/10.1016/j.ejar.2018.07.003
Khoo, M. L., Das, S. K., & Ghaffar, M. A. (2019). Gastric emptying and the enzymatic activity in the stomach of Amphiprion ocellaris fed on artificial diet. Sains Malaysia, 48(1), 1–6. http://dx.doi.org/10.17576/jsm-2019-4801-01
Kolkovski, S. (2001). Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture, 200, 181–201. https://doi.org/10.1016/S0044-8486(01)00700-1
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. http://doi.org/10.1038/227680a0
Lipscomb, T. N., Yanong, R. P., Ramee, S. W., & DiMaggio, M. A. (2020). Histological, histochemical and biochemical characterization of larval digestive system ontogeny in black tetra Gymnocorymbus ternetzi to inform aquaculture weaning protocols. Aquaculture, 520, 734957. https://doi.org/10.1016/j.aquaculture.2020.734957
Ma, Z., Guo, H., Zheng, P., Wang, L., Jiang, S., Qin, J. G., & Zhang, D. (2014). Ontogenetic development of digestive functionality in golden pompano Trachinotus ovatus (Linnaeus 1758). Fish Physiology and Biochemistry, 40(4), 1157–1167. https://doi.org/10.1007/s10695-014-9912-0
Madhu, R., Madhu, K., & Retheesh, T. (2012). Life history pathways in false clown Amphiprion ocellaris Cuvier, 1830: A journey from egg to adult under captive condition. The Marine Biological Association of India, 54(1), 77–90.
Maroux, S., Louvard, D., & Baratti, J. (1973). The aminopeptidase from hog-intestinal brush border. Biochimica et Biophysica Acta, 321(1), 282–295. https://doi.org/10.1016/0005-2744(73)90083-1
Nazemroaya, S., Yazdanparast, R., Nematollahi, M. A., Farahmand, H., & Mirzadeh, Q. (2015). Ontogenetic development of digestive enzymes in Sobaity sea bream Sparidentex hasta larvae under culture condition. Aquaculture, 448, 545–551. https://doi.org/10.1016/j.aquaculture.2015.06.038
Olivotto, I., Planas, M., Simoes, N., Holt, G. J., Avella, M. A., & Calado, R. (2011). Advances in breeding and rearing marine ornamentals. Journal of the World Aquaculture Society, 42(2), 135–166. https://doi.org/10.1111/j.1749-7345.2011.00453.x
Önal, U., Langdon, C., & Çelik, İ. (2008). Ontogeny of the digestive tract of larval percula clownfish, Amphiprion percula (Lacépède 1802): A histological perspective. Aquaculture Research, 39(10), 1077–1086. https://doi.org/10.1111/j.1365-2109.2008.01968.x
Peñaz, M. (2001). A general framework of fish ontogeny: A review of the ongoing debate. Folia Zoologica-Praha, 50(4), 241–256.
Putra, D. F., Abol-Munafi, A. B., Muchlisin, Z. A., & Chen, J. C. (2012). Preliminary studies on morphology and digestive tract development of tomato clownfish, Amphiprion frenatus under captive condition. Aquaculture, Aquarium, Conservation & Legislation, 5(1), 29–35.
Rodríguez-Ibarra, L. E., Abdo-de la Parra, M. I., Velasco-Blanco, G., & Aguilar-Zárate, G. (2017). Desarrollo osteológico de la columna vertebral y del complejo caudal de larvas del pez payaso Amphiprion ocellaris (Pomacentridae) en condiciones de cultivo. Revista de Biología Marina y Oceanografía, 52(1), 113–119. http://dx.doi.org/10.4067/S0718-19572017000100009
Rohini, K. M. V., Anil, M. K., & Neethu, R. P. (2018). Larval development and growth of red saddleback Anemonefish, Amphiprion ephippium, (Bloch, 1790) under captive conditions. Indian Journal of Geo-Marine Sciences, 47(12), 2421–2428.
Rønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Sæle, Ø., & Boglione C. (2013). Feeding behaviour and digestive physiology in larval fish: Current knowledge, and gaps and bottlenecks in research. Reviews in Aquaculture, 5, S59–S98. https://doi.org/10.1111/raq.12010
Roux, N., Logeux, V., Trouillard, N., Pillot, R., Magré, K., Salis, P., Lecchini, D., Besseau, L., Laudet, V., & Romans, P. (2021). A star is born again: Methods for larval rearing of an emerging model organism, the false clownfish Amphiprion ocellaris. Journal of Experimental Zoology B, 336(4), 376–385. https://doi.org/10.1002/jez.b.23028
Salze, G., McLean, E., & Craig, S. R. (2012). Pepsin ontogeny and stomach development in larval cobia. Aquaculture, 324¬–325, 315–318. https://doi.org/10.1016/j.aquaculture.2011.09.043
Shin, M. G., Ryu, Y., Choi, Y. H., & Kim, S. K. (2022). Ontogenetic digestive physiology and expression of nutrient transporters in Anguilla japonica larvae. Aquaculture Reports, 25, 101218. https://doi.org/10.1016/j.aqrep.2022.101218
Systat Software Inc. (2009). SigmaPlot (version 11.0). Systa Software Inc., San Jose California, USA.
Versaw, W. S., Cuppett, D., Winters, D. D., & Winters, L. E. (1989). An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science, 54(6), 1557–1558. https://doi.org/10.1111/j.1365-2621.1989.tb05159.x
Walter, H. E. (1984). Proteinases: Methods with hemoglobin, casein and azocoll as substrates. In H. U. Bergmeyern (Ed.), Methods of enzymatic analysis (pp. 270–277). Chemic Weinham.
Weber, K., & Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate polyacrylamide gel electrophoresis. Journal of Biological Chemistry, 244(16), 4406–4412. https://doi.org/10.1016/S0021-9258(18)94333-4
Wilson, J. M., & Castro, L. F. C. (2010). 1–Morphological diversity of the gastrointestinal tract in fishes. Fish Physiology, 30, 1–55. https://doi.org/10.1016/S1546-5098(10)03001-3
Yúfera, M., Moyano, F. J., & Martínez-Rodríguez, G. (2018). The digestive function in developing fish larvae and fry. From molecular gene expression to enzymatic activity. In M. Yúfera (Ed.), Emerging Issues in Fish Larvae Research (pp. 51–86). https://doi.org/10.1007/978-3-319-73244-2_3
Yasir, I., & Qin, J. G. (2007). Embryology and early ontogeny of an anemonefish Amphiprion ocellaris. Journal of the Marine Biological Association of the United Kingdom, 87(4), 1025–1033. https://doi.org/10.1017/S0025315407054227
Zambonino-Infante, J. L., & Cahu, C. L. (2001). Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology C, 130(4), 477–487. https://doi.org/10.1016/S1532-0456(01)00274-5
Zambonino-Infante, J. L., & Cahu, C. L. (2007). Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 268, 98–105. https://doi.org/10.1016/j.aquaculture.2007.04.032
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2023 Revista de Biología Tropical