Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Dinámica genotípica y dispersión, en biomas colombianos, de mutaciones kdr asociadas con resistencia a piretroides en el mosquito Aedes aegypti (Diptera: Culicidae)
PDF
HTML
EPUB

Palabras clave

biome;
mathematical model;
pyrethoid resistance,
Val1016Ile and Phe1534Cys sites;
ground delivery transportation
bioma;
modelo matemático;
resistencia a piretroides,
sitios Val1016Ile y Phe1534Cys;
transporte de carga terrestre

Cómo citar

Aguirre-Obando, O. A., Valencia-Marín, B. S., & Duarte-Gandica, I. (2024). Dinámica genotípica y dispersión, en biomas colombianos, de mutaciones kdr asociadas con resistencia a piretroides en el mosquito Aedes aegypti (Diptera: Culicidae). Revista De Biología Tropical, 72(1), e54870. https://doi.org/10.15517/rev.biol.trop.v72i1.54870

Resumen

Introducción: En Colombia, Aedes aegypti se encuentra presente en el 80 % del país y poco se conoce sobre las mutaciones kdr que están relacionadas con la resistencia a piretroides (PY), así como la influencia de los diferentes biomas (principalmente la temperatura) y el transporte pasivo de carga terrestre, en el mantenimiento y diseminación de poblaciones que presenten estas mutaciones. Objetivo: Modelar el comportamiento de las frecuencias genotípicas asociadas a la mutación kdr Val1016Ile + Phe1534Cys, en poblaciones de A. aegypti, considerando el movimiento de las poblaciones del vector entre biomas colombianos a través del transporte pasivo por carga terrestre. Método: Se obtuvieron datos de la literatura asociados con la dinámica poblacional y los parámetros del ciclo de vida del mosquito asociados con las temperaturas de cada bioma colombiano y el transporte de carga terrestre a través de camiones entre los biomas. Además, se evaluó el impacto del costo evolutivo para las mutaciones kdr Val1016Ile y Phe1534Cys representado en las tasas de ovoposición y muerte. Resultados: El comportamiento de las poblaciones está influenciado tanto por el costo evolutivo de los genotipos resistentes como por el transporte pasivo de carga y, que una vez los genotipos resistentes lleguen a un bioma gracias al transporte de mosquitos mediado por camiones, estos se mantienen allí. Conclusión: La migración pasiva a través del transporte de carga terrestre, como medio de flujo genético de individuos portadores de resistencia a PY entre diferentes regiones o biomas, se revela como un factor esencial para la diseminación, y el costo evolutivo como un factor determinante en la dinámica, de las mutaciones kdr en las poblaciones de A. aegypti.

https://doi.org/10.15517/rev.biol.trop..v72i1.54870
PDF
HTML
EPUB

Citas

Aguirre-Obando, O., Dalla, A., Duque, J., & Navarro-Silva, M. (2015). Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia, 32 (1), 14–22.

Alvarez, L. C., Ponce, G., Saavedra‐Rodriguez, K., Lopez, B., & Flores, A. E. (2015). Frequency of V1016I and F1534C mutations in the voltage‐gated sodium channel gene in Aedes aegypti in Venezuela. Pest Management Science, 71(6), 863–869.

Aponte, A., Penilla, R. P., Rodríguez, A. D., & Ocampo, C. B. (2019). Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Tropica, 191, 146–154.

Atencia, M. C., Pérez, M. de J., Jaramillo, M. C., Caldera, S. M., Cochero, S., & Bejarano, E. E. (2016). Primer reporte de la mutación F1534C, asociada con resistencia cruzada a DDT y piretroides, en Aedes aegypti de Colombia. Biomédica, 36(3), 432–437.

Bliman, P. A., Aronna, M. S., Coelho, F. C., & da Silva, M. A. (2018). Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control. Journal of Mathematical Biology, 76(5), 1269–1300.

Brito, L. P., Linss, J. G., Lima-Camara, T. N., Belinato, T. A., Peixoto, A. A., Lima, J. B. P., Valle, D., & Martins, A. J. (2013). Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE, 8(4), e60878.

Brown, J. E., Mcbride, C. S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., Lutomiah, J., Fernandez-Salas, I., Ponlawat, A., Cornel, A. J., Black, W. C., Gorrochotegui-Escalante, N., Urdaneta-Marquez, L., Sylla, M., Slotman, M., Murray, K. O., Walker, C., & Powell, J. R. (2011). Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proceedings of the Royal Society B: Biological Sciences, 278(1717), 2446–2454.

Chen, M., Du, Y., Nomura, Y., Zhorov, B. S., & Dong, K. (2020). Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti. Archives of Insect Biochemistry and Physiology, 104(2), e21686.

Dusfour, I., Vontas, J., David, J. P., Weetman, D., Fonseca, D. M., Corbel, V., Raghavendra, K., Coulibaly, M. B., Martins, A.J., Kasai, S., & Chandre, F. (2019). Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Neglected Tropical Diseases, 13(10), e0007615.

Eritja, R., Palmer, J., Roiz, D., Sanpera‑Calbet, I., & Bartumeus, F. (2017). Direct evidence of adult Aedes albopictus dispersal by car. Scientific Reports, 1, 14399.

Fick, S., & Hijmans, J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–15.

Fonseca, I., & Quiñones, M. (2005). Resistencia a insecticidas en mosquitos (Diptera: Culicidae): mecanismos, detección y vigilancia en salud pública. Revista Colombiana de Entomología, 31(2), 107–115.

Granada, Y., Mejía-Jaramillo, A. M., Strode, C., & Triana-Chavez, O. (2018). A point mutation V419l in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λ-cyhalothrin in Colombia. Insects, 9(1), 23.

Guagliardo, S. A., Morrison, A. C., Barboza, J. L., Requena, E., Astete, H., Vazquez-Prokopec, G., & Kitron, U. (2015). River boats contribute to the regional spread of the dengue vector Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 9(4), 1–16.

Huber, J., Childs, M., Caldwell, J., & Mordecai, E. (2018). Seasonal temperature variation influences climate suitability for dengue, chikungunya, and zika transmission. PLoS Neglected Tropical Diseases, 12, e0006451.

IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). (2014). Promedios climatológicos 1981-2010. http://www.ideam.gov.co/web/tiempo-y-clima/clima.

IGAC (Instituto Geográfico Agustín Codazzi), IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales), Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, IIAP (Instituto de Investigaciones Ambientales del Pacífico), INVEMAR (Instituto de Investigaciones Marinas y Costeras José Benito Vives De Andréis) & Instituto Amazónico de Investigaciones Científicas Sinchi. (2007). Ecosistemas continentales, costeros y marinos de Colombia. Imprenta Nacional de Colombia.

IRAC (Insecticide Resistance Action Committee). (2020). Clasificación del modo de acción de los insecticidas. España. https://irac-online.org/documents/folleto-modo-de-accion-insecticidas-y-acaricidas/

Itokawa, K., Hu, J., Sukehiro, N., Tsuda, Y., Komagata, O., Kasai, S., Tomita, T., Minakawa, N., & Sawabe, K. (2020). Genetic analysis of Aedes aegypti captured at two international airports serving to the Greater Tokyo Area during 2012-2015. PLoS ONE, 15(4), e0232192.

Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A., Shearer, F. M., Brady, O. J., Messina, J. P., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx, G., Schaffner, F., Wint, G. R., Elyazar, I. R. F., Teng. H. J., & Hay, S. I. (2015). The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data, 2, 150035.

Laskowski, D. A. (2002). Physical and chemical properties of pyrethroids. Reviews of Environmental Contamination and Toxicology, 174, 49–170.

Linss, J. G. B., Brito, L. P., Garcia, G. A., Araki, A. S., Bruno, R. V., Lima, J. B. P., Valle, D., & Martins, A. J. (2014). Distribution and dissemination of the Val1016Ile and Phe1534Cys kdr mutations in Aedes aegypti Brazilian natural populations. Parasites and Vectors, 7(1), 1–11.

Maestre-Serrano, R., Pareja-Loaiza, P., Gomez Camargo, D., Ponce-García, G., & Flores, A. E. (2019). Co-occurrence of V1016I and F1534C mutations in the voltage-gated sodium channel and resistance to pyrethroids in Aedes aegypti (L.) from the Colombian Caribbean region. Pest Management Science, 75(6), 1681–1688.

Martins, A. J., Lima, J. B. P., Peixoto, A. A., & Valle, D. (2009). Frequency of Val1016Ile mutation in the voltage-gated sodium channel gene of Aedes aegypti Brazilian populations. Tropical Medicine & International Health, 14, 1351–1355.

Melo, M., Campos, K., Brito, L., Roux, E., Melo, S., Bellinato, D., Pereira, J., & Martins, A. (2020). Kdr genotyping in Aedes aegypti from Brazil on a nation-wide scale from 2017 to 2018. Scientific Reports, 10, 13267.

Ministerio de Transporte. (2018). Rendición de cuentas sector transporte 2018. https://www.mintransporte.gov.co

Ministerio de Transporte. (2021). Registro Nacional de Despacho de Transporte de carga por carretera, viajes y toneladas movilizadas. https://plc.mintransporte.gov.co/Estad%C3%ADsticas/Carga-Modo-Terrestre/Carga-Movilizada-Carretera-RNDC/Toneladas-y-viajes-2020

Moyes, C. L., Vontas, J., Martins, A. J., Ng, L. C., Koou, S. Y., Dusfour, I., & Weetman, D. (2017). Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 11(7), e0005625.

Ocampo, C. B., Salazar-Terreros, M. J., Mina, N. J., Mcallister, J., & Brogdon, W. (2011). Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica, 118(1), 37–44.

Pareja-Loaiza, P., Santacoloma-Varon, L., Rey-Vega, G., Gomez-Camargo, D., Maestre-Serrano, R., & Lenhart, A. (2020). Mechanisms associated with pyrethroid resistance in populations of Aedes aegypti (Diptera: Culicidae) from the Caribbean coast of Colombia kdr mutations and enzymes associated with pyrethroid resistance in Aedes aegypti in Colombia. PLoS ONE, 15(10), e0228695.

Pinto, J., Palomino, M., Mendoza‐Uribe, L., Sinti, C., Liebman, K. A., & Lenhart, A. (2019). Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru. Parasites and Vectors, 12(1), 494.

Ponce‐García, G., Del Río‐Galvan, S., Barrera, R., Saavedra‐Rodriguez, K., Villanueva‐Segura, K., Felix, G, & Flores, A. E. (2016). Knockdown resistance mutations in Aedes aegypti (Diptera: Culicidae) from Puerto Rico. Journal of Medical Entomology, 53(6), 1410–1414.

R Core Team. (2021). R: A language and environment for statistical computing (Software). R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Reiter, P., Amador, M. A., Anderson, R. A., & Clark, G. G. (1995) Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. The American Journal of Tropical Medicine and Hygiene, 52(2), 177–179.

Rincón, N. G., & Acevedo, D. A. (2019). General analysis of the epidemiological outbreak caused by the zika and chikungunya viruses in Colombia. Revista de la Facultad de Medicina, 27(2), 47–62.

Rinkevich, F. D., Du, Y., & Dong, K. (2013). Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pesticide Biochemistry and Physiology, 106, 93–100.

Ruiz-López, F., González-Mazo, A., Vélez-Mira, A., Gómez, G. F., Zuleta, L., Uribe, S., & Vélez-Bernal, I. D. (2016). Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. Biomedica, 36(2), 303–308.

Sánchez, A. & Posada, M. (2022). Impacto del cambio climático en los vectores Aedes aegypti y Aedes albopictus y su importancia en su distribución geográfica en Colombia. BIOCIENCIAS, 6(1), 49–68.

Schechtman, H., & Souza, M. O. (2015). Costly inheritance and the persistence of insecticide resistance in Aedes aegypti populations. PLoS ONE, 10(5), e0123961.

SIAC (Sistema de Información Ambiental de Colombia). (s.f.). Catálogo de Mapas SIAC. http://www.siac.gov.co/catalogo-de-mapas

Smith, L. B., Kasai, S., & Scott, J. G. (2016). Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology, 133, 1–12.

Smith, L. B., Silva, J. J., Chen, C., Harrington, L. C., & Scott, J. G. (2021). Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in Aedes aegypti. PLoS Neglected Tropical Diseases, 15(3), e0009271.

Sober, E. (2001). The two faces of fitness. In R. Singh, D. Paul, C. Krimbas, & J. Beatty (Eds.), Thinking about Evolution: Historical, Philosophical, and Political Perspectives (pp. 309–321). Cambridge University Press.

Soderlund, D. M., & Knipple, D. C. (1999). Knockdown resistance to DDT and pyrethroids in the house fly (Diptera: Muscidae): from genetic trait to molecular mechanism. Annals of the Entomological Society of America, 92(6), 909–915.

Valencia-Marín, B., Aguirre-Obando, O., & Navarro-Silva, M. (2022). Gene flow patterns of the Aedes aegypti (Diptera: Culicidae) mosquito in Colombia: a continental comparison suggests multiple invasion routes and gene exchange. Revista Brasileira de Entomologia, 66(3), e20220017.

Valencia-Marín, B., Duarte, G. & Aguirre-Obando, O. (2020). The Mayaro virus and its potential epidemiological consequences in Colombia: an exploratory biomathematics analysis. Parasites & Vectors, 13, 508.

Velez, I. D., Santacruz, E., Kutcher, S. C., Duque, S. L., Uribe, A., Barajas, J., Gonzalez, S., Patino, A. C., Zuluaga, L., Martínez, L., Muñoz, E., Mejia, M. C., Arbelaez, M. P., Pulido, H., Jewell, N. P., Dufault, S. M., O´Neill, A. L., Simmons, C. P., Anders, K. L., & Tanamas, S. K. (2019). The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in Medellín and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Research, 21(8), 1327.

Vera-Maloof, F. Z., Saavedra-Rodriguez, K., Elizondo-Quiroga, A. E., Lozano-Fuentes, S., & Black IV, W. C. (2015). Coevolution of the Ile1,016 and Cys1,534 mutations in the voltage gated sodium channel gene of Aedes aegypti in México. PLoS Neglected Tropical Diseases, 9(12), e0004263.

Vontas, J., Kioulos, E., Pavilidi, N., Morou, E., della Torre, A., & Ranson, H. (2012). Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and Physiology, 104(2), 126–131.

WHO (World Health Organization). (2017). Respuesta mundial para el control de vectores 2017-2030. https://www.paho.org/es/documentos/respuesta-mundial-para-control-vectores-2017-2030-0

WHO (World Health Organization). (2023). With rising cases, experts discuss Chikungunya spread in the Americas. https://www.paho.org/en/news/4-5-2023-rising-cases-experts-discuss-chikungunya-spread-americas

Zúñiga, I. & Crespo E. (2021). Meteorología y Climatología. Madrid: UNED. España.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2024 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.