Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Respuestas fisiológicas y anatómicas de Passiflora tripartita var. mollissima (Passifloraceae) al déficit hídrico
PDF (English)
HTML (English)
EPUB (English)

Cómo citar

Toro-Tobón, G., Alvarez-Flórez, F., Mariño-Blanco, H. D., & Melgarejo, L. M. (2024). Respuestas fisiológicas y anatómicas de Passiflora tripartita var. mollissima (Passifloraceae) al déficit hídrico. Revista De Biología Tropical, 72(1), e56532. https://doi.org/10.15517/rev.biol.trop.v72i1.56532

Resumen

Introducción: Passiflora tripartita var. mollissima (banana passionfruit - curuba) es una de las frutas tropicales exóticas de la diversidad de la familia Passifloraceae en Sudamérica, promisoria por sus propiedades organolépticas y actividad antioxidante. Objetivo: Evaluar las respuestas fisiológicas y anatómicas de la curuba bajo déficit hídrico con el fin de comprender mejor los mecanismos que mitigan este estrés y afectan la producción de sus cultivos, que están sujetos al cambio climático y al calentamiento global. Métodos: Plántulas de 3 meses de edad se sometieron a un déficit hídrico mediante una reducción del riego al 70 % durante 49 días en condiciones de invernadero. Se realizaron mediciones morfológicas (área foliar, altura y número de hojas) y fisiológicas (conductancia estomática, Fv/Fm, contenido de clorofilas) a lo largo del tiempo, y transcurridos los tratamientos de irrigación se midieron parámetros de biomasa, además de rasgos anatómicos foliares. Resultados: Las plantas experimentaron una disminución en la altura, área foliar, número de hojas, índice de área foliar y contenido relativo de agua, respuestas comunes en plantas sometidas a una irrigación reducida. Adicionalmente, las plantas exhibieron ciertos mecanismos que pueden atribuirse a la tolerancia al déficit hídrico tales como una mayor relación vástago: raíz, cierre de estomas, un aumento en la densidad estomática, una reducción en el grosor del tejido del mesófilo y una disminución en el número de vasos del xilema y su diámetro; pues le permiten a la curuba disminuir la pérdida de agua y reducir la probabilidad de cavitación en los vasos del xilema. Conclusiones: Las plantas de la curuba tienen la capacidad de implementar estrategias de mitigación frente al déficit hídrico, lo que les permite sobrevivir y soportar condiciones ambientales desafiantes

https://doi.org/10.15517/rev.biol.trop..v72i1.56532
PDF (English)
HTML (English)
EPUB (English)

Citas

Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034

Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032.

Bacelar, E. A., Correia, C. M., Moutinho-Pereira, J. M., Gonçalves, B. C., Lopes, J. I., & Torres-Pereira, J. M. G. (2003). Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiology, 24, 233–239.

Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5, 1–10. https://doi.org/10.12688/F1000RESEARCH.7678.1

Ben Abdallah, M., Trupiano, D., Polzella, A., de Zio, E., Sassi, M., Scaloni, A., Zarrouk, M., ben Youssef, N., & Scippa, G. S. (2018). Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of Plant Physiology, 220, 83–95. https://doi.org/10.1016/j.jplph.2017.10.009

Boughalleb, F., Abdellaoui, R., Ben-Brahim, N., & Neffati, M. (2014). Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Central European Journal of Biology, 9(12), 1215–1225. https://doi.org/10.2478/s11535-014-0353-7

Chartzoulakis, K., Patakas, A., Kofidis, G., Bosabalidis, A., & Nastou, A. (2002). Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulturae, 95, 39–50.

Choat, B., Ball, M., Luly, J., & Holtum, J. (2003). Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131(1), 41–48. https://doi.org/10.1104/pp.014100

Cousins, A. B., Mullendore, D. L., & Sonawane, B. V. (2020). Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. The Plant Journal, 101(4), 816–830. https://doi.org/10.1111/tpj.14664

Dalirie, S. S., Sharifi, R. S., & Farzaneh, S. (2010). Evaluation of yield, dry matter accumulation and leaf area index in wheat genotypes as affected by terminal drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 182–186. https://doi.org/10.15835/nbha3814583

de Freitas, R. M. O., Dombroski, J. L. D., de Freitas, F. C. L., Nogueira, N. W., & Pinto, J. R. D. S. (2017). Physiological responses of cowpea under water stress and rewatering in no-tillage and conventional tillage systems. Revista Caatinga, 30(3), 559–567. https://doi.org/10.1590/1983-21252017v30n303rc

DANE. (2023). Sistema de información de precios y abastecimiento del sector agropecuario componente de abastecimiento de alimentos (SIPSA_A) enero 2023. DANE, Colombia. https://www.dane.gov.co/files/investigaciones/agropecuario/boletin_abastecimiento_ene23.pdf

dos Santos, T. B., Ribas, A. F., de Souza, S.G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2(1), 113–135. https://doi.org/10.3390/stresses2010009

Ennajeh, M., Vadel, A. M., Cochard, H., & Khemira, H. (2010). Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. Journal of Horticultural Science and Biotechnology, 85(4), 289–294. https://doi.org/10.1080/14620316.2010.11512670

Esquerre-Ibañez, B., Rojas-Idrogo, C., Llatas-Quiroz, S., & Delgado-Paredes, G. E. (2014). El género Passiflora L. (Passifloraceae) en el departamento de Lambayeque, Perú. Acta Botanica Malacitana, 39, 55–70.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021

Fischer, G., Posada, C., & Piedrahíta, W. (2009). Ecofisiología de las especies pasifloráceas cultivadas en Colombia. En D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra-Posada, W. Piedrahíta, & L. E. Flórez (Eds.), Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba (pp. 45–67). Sociedad Colombiana de Ciencias Hortícolas. https://www.researchgate.net/publication/215793346.

Fischer, G., Quintero, O. C., Tellez, C. P., & Melgarejo, L. M., (2020). Curuba: Passiflora tripartita var. mollissima y Passiflora tarminiana. En A. Rodríguez, F. Gelape, M. Parra, & A. M. Costa (Eds.), Pasifloras especies cultivadas en el mundo (pp. 106–121). ProImpress, Cepass.

Fischer, G., & Miranda, D. (2021). Review on the ecophysiology of important Andean fruits: Passiflora L. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9471–9481. https://doi.org/10.15446/rfnam.v74n2.91828

Flechas-Bejarano, N., Melgarejo, L. M., & Magnitskiy, S. (2019). Fenología floral, crecimiento y calidad de frutos de curuba (Passiflora tripartita Kunt var. mollissima) en respuesta a diferentes dosis de nutrientes minerales. En L. M. Melgarejo (Ed.), Gulupa (Passiflora edulis), curuba (Passiflora tripartita), aguacate (Persea americana) y tomate de árbol (Solanum betaceum) Innovaciones (pp. 151–167). Universidad Nacional de Colombia.

Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (2003). Physiology of crop plants. Blackwell Publishing Company.

Gomes, M. de M. de A., Mota, M. J., Torres, A., Carriello, R. C., & Campostrini, E. (2018). Water relations, photosynthetic capacity, and growth in passion fruit (Passiflora edulis Sims f. flavicarpa Deg.): Seedlings and grafted plants. Revista Ceres, 65(2), 135–143. https://doi.org/10.1590/0034-737X201865020004

Gomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49–56. https://doi.org/10.1016/j.scienta.2012.04.026

GraphPad. (2023). GraphPad (Version 10, Software). https://www.graphpad.com/features

Gutiérrez, M., Miguel-Chávez, R. S., & Terrazas, T. (2009). Xylem conductivity and anatomical traits in diverse lianas and small tree species from a tropical forest of Southwest Mexico. International Journal of Botany, 5(4), 279–286. https://doi.org/10.3923/ijb.2009.279.286

Inoue, S., Dang, Q. L., Man, R., & Tedla, B. (2019). Northward migration of trembling aspen will increase growth but reduce resistance to drought-induced xylem cavitation. Botany, 97(11), 627–638. https://doi.org/10.1139/cjb-2019-0099

Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11(1), 100–105.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

Lima, L. K. S., Jesus, O. N. de, Soares, T. L., Oliveira, S. A. S. de, Haddad, F., & Girardi, E. A. (2019). Water deficit increases the susceptibility of yellow passion fruit seedlings to Fusarium wilt in controlled conditions. Scientia Horticulturae, 243, 609–621. https://doi.org/10.1016/j.scienta.2018.09.017

Liu, H., Song, S., Zhang, H., Li, Y., Niu, L., Zhang, J., & Wang, W. (2022). Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences, 23, 14824. https://doi.org/10.3390/ijms232314824

Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655

Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, E. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580–585.

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51(345), 659–668.

Mayorga, M., Fischer, G., Melgarejo, L. M., & Parra-Coronado, A. (2020). Growth, development and quality of Passiflora tripartita var. mollissima fruits under two environmental tropical conditions. Journal of Applied Botany and Food Quality, 93, 66–75. https://doi.org/10.5073/JABFQ.2020.093.009

Melgarejo, L. M., Hernández, S., Barrera, J., Solarte, M. E., Suárez, D., Pérez, L. V., Rojas, Y. A., Cruz, M., Moreno L., Crespo, S., & Pérez, W. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia.

Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13). 3983–3998. https://doi.org/10.1093/jxb/ert208

Parry, C., Blonquist, J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant Cell and Environment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324

Primot, S., Coppens D’eeckenbrugge, G., Rioux, V., Albeiro, J., Pérez, O., & Garcin, F. (2005). Variación morfológica de tres especies de curubas (Passiflora tripartita var. mollissima, P. tarminiana y P. mixta) y sus híbridos en el Valle del Cauca (Colombia). Revista Brasileira de Fruticultura, 27(3), 467–471. https://doi.org/10.1590/S0100-2945200500030003

Qi, Y., Ma, L., Ghani, M. I., Peng, Q., Fan, R., Hu, X., & Chen, X. (2023). Effects of drought stress induced by hypertonic polyethylene glycol (PEG-6000) on Passiflora edulis Sims physiological properties. Plants, 12, 2296. https://doi.org/10.3390/plants12122296

R Core Team (2021). R: A language and environment for statistical computing (Version 4.3.1, Software). R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Rizwan, H. M., Waheed, A., Ma, S., Li, J., Arshad, M. B., Irshad, M., Li, B., Yang, X., Ali, A., Ahmed, M. A. A., Shaheen, N., Scholz, S. S., Oelmüller, R., Lin, Z., & Chen, F. (2022). Comprehensive genome-wide identification and expression profiling of Eceriferum (CER) gene family in passion fruit (Passiflora edulis) under Fusarium kyushuense and drought stress conditions. Frontiers in Plant Science, 13, 898307.

Rodríguez, N., Flechas, N., Melgarejo, L. M., & Magnitskiy, S. (2019a). Sintomatología de deficiencias de macronutrientes, boro y zinc, y su efecto sobre el crecimiento de la curuba (Passiflora tripartita Kunth var. mollissima) en estado vegetativo. En L. M. Melgarejo (Ed.), Gulupa (Passiflora edulis), curuba (Passiflora tripartita), aguacate (Persea americana) y tomate de árbol (Solanum betaceum) Innovaciones (pp. 103–117). Universidad Nacional de Colombia.

Rodríguez, N., Melgarejo, L. M., & Blair, M. (2019b). Purple passion fruit, Passiflora edulis Sims f. edulis, variability for photosynthetic and physiological adaptation in contrasting environments. Agronomy, 9, 231–248.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis (Version Java 8, Software). https://imagej.net/ij/index.html

Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260.

Souza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., & Girardi, E. A. (2018). Biometric, physiological and anatomical responses of Passiflora spp. to controlled water deficit. Scientia Horticulturae, 229, 77–90. https://doi.org/10.1016/j.scienta.2017.10.019

Téllez, C. P., Fischer, G., & Quintero, O. C. (2011). Comportamiento fisiológico y fisicoquímico de frutos de curuba (Passiflora mollissima Bailey) encerados y almacenados a dos temperaturas. Revista Colombiana de Ciencias Hortícolas, 1(1), 67–80. https://doi.org/10.17584/rcch.2007v1i1.1146

Toro-Tobón, G., Alvarez-Flórez, F., Mariño-Blanco, H., & Melgarejo, L. M. (2022). Foliar functional traits of resource island-forming nurse tree species from a semi-arid ecosystem of La Guajira, Colombia. Plants, 11, 1723. https://doi.org/10.3390/plants11131723x

Turner, D. W., Menzel, C. M., & Simpson, D. R. (1996). Short term drying of half the root system reduces growth but not water status or photosynthesis in leaves of passionfruit (Passiflora sp.). Scientia Horticulturae, 65, 25–36.

Vasellati, V., Oesterheld, M., Medan, D., & Loreti, J. (2001). Effects of flooding and drought on the anatomy of Paspalum dilatatum. Annals of Botany, 88(3), 355–360. https://doi.org/10.1006/anbo.2001.1469

Yang, Q., Li, B., Rizwan, H. M., Sun, K., Zeng, J., Shi, M., Guo, T., & Chen, F. (2022). Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression analysis under Fusarium kyushuense and drought stress conditions in Passiflora edulis. Frontiers in Plant Science, 13, 972734. https://doi.org/10.3389/fpls.2022.972734

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2024 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.